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Abstract

Software Verification is a crucial part of development cycles that ensures the ro-

bustness and correctness of software with respect to its specification. There are two

fundamental approaches when it comes to verifying software: first off, there’s static

verification, which includes paradigms such as Model Checking, Static Analysis, and

Formal Verification. Secondly, there’s dynamic verification, which encompasses Unit

Testing, Integration Testing, and many more. While the latter approach is more

commonly used than the former, it doesn’t guarantee correct software. To have a

complete proof of correctness, we have to leverage the mathematical modeling in-

volved in Formal Verification, which offers ways - Contracts - to ensure a complete

verification pipeline that oversees all possible cases of the software. However, writ-

ing verification contracts is a tedious task that requires significant expertise and

resources, but since AI has started its rapid progress and expansion, several ques-

tions have risen about its applicability in formal verification. This report introduces

an AI-based contract generation system to generate ACSL specifications to verify

programs. It achieves this by incorporating a Neurosymbolic architecture that syn-

ergizes state-of-the-art techniques in Generative AI with systematic approaches in

Language and Compiler Designs, generating more complete specifications.

Keywords: Formal Methods, Neurosymbolic, Generative AI, Language Design, Com-

piler Design





Résumé

La vérification des logiciels est un élément crucial des cycles de développement qui

garantit la robustesse des logiciels par rapport à leurs spécifications. Il existe deux

approches fondamentales pour vérifier les logiciels : tout d’abord, il y a la vérifi-

cation statique, qui comprend des paradigmes tels que la vérification des modèles,

l’analyse statique et la vérification formelle. Ensuite, il y a la vérification dynamique,

qui englobe les tests unitaires, les tests d’intégration et bien d’autres. Bien que cette

dernière approche soit plus utilisée que la première, elle ne garantit pas qu’un logi-

ciel est correct. Pour avoir une preuve complète des comportements corrects, nous

devons tirer parti de la modélisation mathématique impliquée dans la vérification

formelle, qui offre des moyens - les contrats - pour garantir un pipeline de vérifica-

tion complet qui supervise tous les cas possibles du logiciel. Cependant, la rédaction

de contrats de vérification est une tâche fastidieuse qui nécessite une expertise et

des ressources importantes, mais depuis que l’IA a commencé sa progression et son

expansion rapides, plusieurs questions se sont posées quant à son applicabilité à la

vérification formelle. Ce rapport présente un système de génération de contrats basé

sur l’IA pour générer des spécifications ACSL afin de vérifier des programmes. Il

y parvient en incorporant une architecture neurosymbolique qui synergise les tech-

niques de pointe en matière d’IA générative avec des approches systématiques en

matière de conception de langage et de compilateur, générant des spécifications plus

complètes.

Keywords: Vérification Formelle, Neurosymbolique, IA Générative, Conception de

Langage, Compilateur
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Chapter 1

Introduction

1.1 Overview

During the late 20th century, software engineering experienced rapid evolution that

led to increasingly complex systems. As software grew more intricate, so did the

challenges of ensuring its reliability, correctness, and security. High-profile failures,

such as the Therac-25 radiation therapy machine accidents in the 1980s and the Ar-

iane 5 rocket failure in 1996, underscored the potentially catastrophic consequences

of software errors. These incidents highlighted the limitations of traditional testing

and debugging methods, which often fail to detect subtle yet critical flaws. Formal

methods emerged to solve these problems by providing a mathematical framework

for specifying and verifying software behavior. Formal methods have multiple ap-

proaches for software verification, including but not limited to testing, simulation,

and formal proofs, and each has distinct advantages and limitations. Testing is

practical and straightforward, allowing for automated detection of real-world issues,

but it cannot cover all possible inputs and states, leaving some bugs undetected.

Simulation helps explore system behavior under varied conditions early in the de-

sign phase, but its accuracy is model-dependent and cannot guarantee correctness.

Formal proofs provide the highest assurance of system correctness by rigorously

verifying adherence to specifications, but they are complex, time-consuming, espe-

cially when verifying hard real-time systems that must be reliable at all times such

1



2 Chapter 1. Introduction

as spaceships, airplanes, autonomous vehicles, etc. As the software code grows in

size and complexity, it becomes clear that you can’t rely solely on the developer

to write correct software code. As such, many companies and organizations are

hiring teams of formal methods experts to verify the written software. However,

the AI "boom" that we all have seen these past few years has offered some of the

most potent solutions to some of the most complex problems in the world, ranging

from climate change modeling, protein folding, medical imaging, and famously, text

understanding and generation. With the recent breakthroughs in sequence models

such as Transformers [1], the industry is now able to overcome this challenge and

open a wide variety of applications, one of which was showcased with the emergence

of Large Language Models (LLM).

As emphasized, writing Formal Proofs can be a tedious process that requires sig-

nificant expertise. However, some works have been proposed by the AI research

community to automate this process using generative modeling to generate con-

tracts for a given program’s specification. Though these works assume an existing

program’s implementation, it is efficient to categorize them into two categories: the

first category represents white-box approaches that partially take the code as an

input, whereas the second one represents black-box approaches that do not rely on

the software’s implementation. As AI-based contract generation is a relatively new

question in research, there are not many approaches that handle black-box frame-

works, and to the best of our knowledge, the system introduced in this report is one

of the first works that leverage generative AI to tackle black-box settings, and the

first to combine it in a hybrid architecture with systematic methods to improve the

correctness and completeness of the generated contracts.

1.2 Motivation and Objectives

Bringing user-friendly software verification tools to developers is a motivating goal

for building this system. With this system, we aim to improve software reliability

and safety, reducing development costs and setting a safety standard for all emerging

applications. By achieving these objectives, reliable software will be more accessible
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to organizations and large or small companies alike. Furthermore, we envision this

work laying a foundation for future intelligent systems to emerge and iteratively

improve upon what this system offers.

1.3 Report Structure

This thesis is structured to provide a comprehensive exploration of AI-based Con-

tract Generation. It begins with Chapter 1, the Introduction, establishing the con-

text, motivation, and objectives. Chapter 2, Background, defines key concepts and

offers a thorough literature review, setting the theoretical groundwork. Chapter

3, Contract Generation System, presents an overview of the system’s architecture,

discussing design principles and component interactions. Then, it focuses on the de-

sign of The Abstract Description Language, detailing its features and syntax. Then,

the proceeding section explores the development of Pyramid, the conversion engine

of this language. Sequential Reasoning Strategies describe a concept to mitigate

the ambiguity and incompleteness of users’ specifications, intuitions, and integra-

tion. Then, the ADL Generator’s section focuses on building the generative model

that translates sequential reasoning strategies to abstract descriptions in the ADL

format, from data collection to fine-tuning. Next, Chapter 4, Results, presents snip-

pets for each component, an evaluation of the ADL Generator, and a commentary on

the system’s performance. Finally, Chapter 5, Perspectives and Conclusion, offers

reflections on the overall study and a conclusion to this report.



Chapter 2

Background

2.1 Insights into Formal Methods

• Specifications: What a program is supposed to do?

Specifications are formal descriptions of a system’s behavior and properties,

translated from informal descriptions like diagrams, tables, or text into a well-

defined language. They provide a concise, high-level overview and allow for

formal reasoning and deductions about the system.

Specifications can be categorized into three types: informal, formatted, and

formal. Informal specifications use natural language, which can be ambigu-

ous and disorganized, potentially leading to incompleteness, inconsistency, and

misunderstandings. Throughout this report, we also refer to this category of

specifications as descriptions. Formatted specifications employ standardized

syntax that offers basic consistency and completeness checks but still allows

for imprecise semantics, which can introduce errors. Formal specifications are

rigorously defined in both syntax and semantics, often using mathematical

precision to eliminate imprecision and ambiguity. While they provide a strong

foundation for verifying the equivalence between specification and implemen-

tation, they can be difficult to read without specialized training due to their

complexity and semantic distance.

4



2.1. Insights into Formal Methods 5

• What is a contract anyway?

The purpose of a function contract is to specify the expected properties of the

input and, in return, the guaranteed properties of the output. The expected

properties are known as the precondition, while the guaranteed properties of

the output are referred to as the postcondition. This theoretical framework

is practically applied using specification languages such as ACSL[2] or JML[3].

These languages extend the core language with features like logic constructs,

connectors, primitive types, and built-in predicates to facilitate writing precise

specifications.

• ACSL

ACSL[2] (ANSI/ISO C Specification Language) is a formal specification lan-

guage designed for use with C programs. It provides a way to specify the be-

havior and properties of C functions and programs using annotations written in

comments within the source code. These annotations describe preconditions,

postconditions, invariants, and other properties that the program should sat-

isfy. ACSL is used to facilitate formal verification and static analysis, enabling

the detection of errors, proving correctness, and ensuring that the implementa-

tion adheres to its specifications. In practice, ACSL introduces preconditions

using the "requires" clauses, and postconditions using the "ensures" clauses.

The following code snippet resembles ACSL contracts for a C program that

returns the absolute value of an integer.

1 /*@

2 requires INT_MIN < val;

3 ensures \result >= 0;

4 ensures (val >= 0 ==> \result == val)

5 && (val < 0 ==> \result == -val);

6 */

7 int abs(int val){

8 if(val < 0)

9 return -val;

10 return val;

11 }
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2.2 Insights into Artificial Intelligence

• Large Language Models

Large Language Models (LLMs) are advanced artificial intelligence systems

designed to understand, generate, and manipulate human language. Trained

on vast datasets containing diverse text, these models utilize deep learning

techniques, particularly neural networks with many parameters, to capture

the nuances of language. They can perform a variety of tasks, including text

completion, translation, summarization, and answering questions, by leverag-

ing their ability to model the statistical properties and contextual relationships

within the language. LLMs have revolutionized natural language processing

by achieving state-of-the-art performance in numerous language-related appli-

cations.

• Data Augmentation

Data augmentation is a technique used in machine learning and artificial intel-

ligence to increase the diversity of data available for training models without

actually collecting new data. By applying a variety of transformations to ex-

isting data, such as rotations, translations, flips, scaling, cropping, and noise

addition, it generates new data samples that maintain the original information

content. This process helps improve the generalization ability of models, re-

duces overfitting, and enhances robustness by exposing the model to a broader

range of variations during training. Data augmentation is particularly com-

mon in image processing but is also applied in other domains such as text,

where techniques like synonym replacement, random insertion, random swap,

and random deletion are used, as well as in audio and time-series data.

2.3 Literature Review

Within the first category of white-box approaches, much of the existing works mostly

rely on pretrained LLMs to generate contracts for a given program’s implementa-

tion, and then using engineered prompts or custom selection heuristics to refine
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those contracts. However, when it comes to the second category of black-box ap-

proaches, we haven’t found any existing work that tackles this branch of contract

generations. Thus, to the best of our knowledge, this work is the first to tackle

black-box frameworks.

To present some of the literature we investigated: first, there is SpecGen [4], Lezhi

Ma et al. (2024). In this paper, the authors decompose the task into two types of

generations. The first phase employs a conversational approach in which a prompt

is given to the LLM as few-shot examples, using ChatGPT [5] as an interface to

the GPT-3.5-turbo LLM. They then leverage feedback from the specification veri-

fier to provide more cues to the model, allowing it to generate better specifications.

The second type is designed to tackle cases where the large language model fails to

generate correct specifications. It follows a custom paradigm that the authors call

mutation-based specification generation. In this paradigm, the verification-failed

results generated by the LLM are tweaked using four kinds of mutation operators,

constructing a set of all possible variants of the generated specification. Further-

more, once the latter set is constructed, a novel selection heuristic is used. SpecGen

assigns a selection weight to each of these variants, allowing it to choose a subset

of variants that is most likely to pass the verification test. The results of SpecGen

are promising. The authors tested this approach on a benchmark dataset contain-

ing 120 Java programs against three baseline approaches: Pure-LLM, Daikon, and

Houdini. SpecGen successfully generated JML specifications for 100 out of 120 pro-

grams, while Pure-LLM (conversation-based only), Daikon, and Houdini generated

correct JML specifications for 72, 42, and 21 programs out of 120, respectively. This

demonstrates the superior performance of SpecGen.

Secondly, there is a paper that shares some similarities with our approach, titled

Can ChatGPT support software verification? [6], Christian Janßen et al. (2023),

in which the authors tried to evaluate the ability of large language models, specifi-

cally ChatGPT (GPT-3.5), to generate invariants for programs. There is no prompt

engineering behind this approach; they provide ChatGPT with a basic prompt like

"Compute a loop invariant for the following program!" along with the C code snip-
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pet. However, they include a subtle indication or mask within the snippet to provide

a hint to the LLM on where to place the specification. The results of this approach

closely resemble the ’Naive’ Pure-LLM approach that SpecGen was compared with.

The authors demonstrate that ChatGPT can indeed generate valid loop invariants

for given C programs. Empirically, ChatGPT generated 75 out of 106 valid loop

invariants, which were validated using Frama-C1 [7]. However, the authors also note

that some loop invariants generated by ChatGPT were not validated by Frama-C

due to technical reasons, but these results are still meaningful.

1Frama-C is a set of interoperable program analyzers for C programs developed by the French
Commissariat à l’Énergie Atomique (CEA).



Chapter 3

Contracts Generation System

3.1 Architecture

In the related works we reviewed, while they use custom selection heuristics to

validate contracts, they heavily rely on the generative model’s capabilities to gen-

erate them. However, the system we designed, while also relying on generative

models throughout its processes, implements a hybrid architecture that allows the

generation of contracts to get distributed across multiple generative and systematic

components. Additionally, it leverages generative models to refine contracts as much

as possible, thereby increasing the chances for correct formal specifications.

This section examines how the system is built and provides a comprehensive overview

of its components.

3.1.1 The Input

The contract generation process in this system begins with getting the user’s de-

scription for the program they wish to verify as input, an informal specification

expressed in natural language that describes what the program does. An example

of such a specification could be as follows:

A program that returns the maximum of two numbers

9



10 Chapter 3. Contracts Generation System

3.1.2 Conserving the verbosity

While the description above may seem self-explanatory, it might not be valuable

for a generative model to know how to deal with it, especially if the program is

complex. Therefore, we need to inject some verbosity by introducing more linguistic

semantics into the input, and this is what a Sequential Reasoning Strategy tries to

do. It provides a step-by-step reasoning scheme to follow while generating contracts

for the program and to build a sequential reasoning strategy for a program, the

system prompts ChatGPT to use its capabilities to write one, as shown below.

Figure 1: From description to Sequential Reasoning Strategy via ChatGPT

3.1.3 From one language to another

Right after the sequential reasoning strategy gets generated by ChatGPT, it will

passed as input for a proprietary large language model, ADL Generator, that trans-

lates it from natural language to another language we’ve designed, called the Ab-

stract Description Language (ADL).

ADL is a language that describes a less formal specification, such as a user’s program

description or sequential reasoning strategy, in a high level of abstraction with a

formal syntax. The figure below illustrates this concept.
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Figure 2: The ADL version of the sequential reasoning strategy

• Syntax Correction

As impressive as LLMs show in myriad of applications, they still have flaws.

As such, when the ADL generator produces an output, we can’t know for sure

that the output obeys the ADL syntax. Therefore, we rely on a bigger model,

ChatGPT, in a conversational approach to correct any syntax errors given an

ADL’s template.

Figure 3: The Syntax Correction Loop

In the case of the figure above, there are no syntax errors to fix in the ADL

description. However, when there are syntactic errors, it will be helpful to

correct them because otherwise, the description will not get processed by the

conversion engine.

3.1.4 Contract Generation

The final step of this pipeline is contract generation, carried out by Pyramid, the

conversion engine of ADL. Pyramid is a transpiler (source-to-source compiler) that
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takes in the ADL description generated by the ADL Generator and systematically

converts it into ACSL contracts.

Figure 4: ACSL Contracts generated via Pyramid’s translation of ADL

• Contract Refinement

While Pyramid is a dynamic conversion engine capable of generating compre-

hensive and correct contracts, it still doesn’t guarantee completeness. As such,

we establish a contract refinement loop between Pyramid and ChatGPT, in

which we guide the latter to generate other contracts that Pyramid might have

missed or that are too complex for it.

Figure 5: The Contract Refinement Loop

As shown in the figure above, ChatGPT generate contracts based on whatever

Pyramid has generated, and this is helpful because the refinement loop plays

a role of guiding ChatGPT towards the correct contracts.

3.1.5 The Architecture’s Assembly

The proposed contract generation system, utilizing a hybrid architecture that syn-

ergizes generative modeling with systematic processing, provides a glimpse at what

an industry-scale verification software may look like, which will set a high standard

for software safety.
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In conclusion, with all the components defined, we are now poised to assemble the

system’s architecture.

Figure 6: A view on the system’s global architecture

The following sections will explore the various components of the architecture in

greater detail, providing in-depth analysis and insights into their design, functional-

ity, and integration. Each section will meticulously dissect the underlying principles,

offering a comprehensive understanding of the architecture’s intricacies.
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3.2 The Abstract Description Language

There are multiple reasons why large language models might fail to capture the

nuances that collectively make contracts correct and complete. First of all, given the

environments in which software verification is conducted and its sensitive nature,

there is a severe scarcity of data that these LLMs can train on, and this data

resembles the code and its corresponding contracts. Moreover, the code’s inherent

verbosity tends to amplify the perplexity of these models for code analysis on a low

level, which decreases the likelihood of generating correct and complete contracts.

The system proposed in this report differs from the existing works in multiple ways.

First, instead of relying on the existence of an implementation for a program, it only

needs a description - expressed in natural language - for what the program does.

Then, using some concepts introduced in the later sections of this chapter, it gen-

erates the corresponding ACSL contracts for the given program. Secondly, whereas

the existing approaches employ a large language model for contract generation, the

system introduced in this report uses it differently; instead of having the contract

generation process performed by a large language model, it is done systematically

through a proprietary source-to-source compiler.

Establishing a direct conversion procedure from natural language to ACSL contracts

is indeed a complex process, and it gets amplified by the restrictions highlighted

above. However, an idea has provided some insights on how to mitigate them.

When a formal methods expert tries to write contracts for a program, they often

start by questioning how the program should behave and not by delving into the

implementation. This intuition implies a high level of abstract reasoning about the

program because they know the behavior should be the same, whatever the code

might be. Of course, some implementation-dependent contracts can only be deter-

mined if the code exists, but the core elements that define the program’s behavior

should produce consistent results.

This intuition has enabled the creation of a formal domain-specific language by which



3.2. The Abstract Description Language 15

the system mimics the abstract reasoning necessary to write program contracts. This

section introduces the Abstract Description Language, or ADL for short, offering a

comprehensive look at how it is defined, the grammar that governs it, a study of

its expressiveness, and some examples to improve the reader’s understanding of the

language.

3.2.1 Definition

The Abstract Description Language (ADL) is a formal language designed to formal-

ize the description of a program, expressed in natural language, by retaining a high

level of abstraction that eliminates the need for an actual implementation of the

program. In other words, when writing an abstract description in ADL, they only

need to express how the program should behave regardless of its implementation.

When we say contract generation, we mean generating preconditions and post-

conditions. Therefore, an abstract description should be constrained to the inputs

and outputs of the program.

3.2.1.1 Structure

The ADL’s structure decomposes the behavior of the whole program into three

sub-classes of behaviors:

1. var, encapsulates all the variables necessary for the program to behave as it

should.

2. action, contains all the assignment operations that change the memory state

of one or more variables declared in the var block.

3. return, consists of all the returns or outputs of the program.

As the action and return blocks might be conditional, ADL also implements a way to

control these behaviors, that is by using a condition that indicates that a particular

assignment (resp. output) is executed (resp. returned) only if it satisfies a specified

condition, or else, satisfying any condition.
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Formally, an abstract description δ is an ordered set containing all the three behavior

sub-classes of the program such that,

δ = {V,A,R}

Where V denotes the set of variables, A denotes the set of actions, and R denotes

the set of returns. These sets are also formally defined as follows:

∀i ∈ N V =
⋃

i{vi}

∀i ∈ N ∃κ ∈ K A =
⋃

i{αi, κi}

∀i ∈ N ∃κ ∈ K R =
⋃

i{ρi, κi}

Where K is the set of conditions.

3.2.2 Grammar

The Abstract Description Language follows a well-defined grammar that dictates

how it should be written. Additionally, as this language was designed to reduce the

verbosity of programs, it enjoys a simple syntax that leads to quick learning. The

following list contains all the grammar for ADL.

• Variable Declaration

⟨var⟩ ::= (⟨identifier⟩ ,)* ⟨identifier⟩ : ⟨type⟩

• Actions Statements

⟨action⟩ ::= ⟨assignment⟩ condition ⟨condition⟩ | ϵ

• Return Statements

⟨return⟩ ::= ⟨output⟩ condition ⟨condition⟩ | ϵ

• Conditions
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⟨condition⟩ ::= (⟨comparison⟩ ⟨andor⟩)* ⟨comparison⟩

| ANY

| ! ⟨condition⟩

| ϵ

• Types

⟨type⟩ ::= integer | pointer | real

• Assignment

⟨assignment⟩ ::= ⟨identifier⟩ = ⟨parameters⟩

| ⟨identifier⟩ = ⟨boolean⟩

• Outputs

⟨output⟩ ::= ⟨expression⟩

| ⟨boolean⟩

| None

• Comparisons

⟨comparison⟩ ::= ( ⟨parameters⟩ ⟨comp-op⟩ ⟨parameters⟩ )

| ( ⟨expression⟩ is ⟨boolean⟩ )

| ! ⟨comparison⟩

⟨comp-op⟩ ::= == | != | <= | >= | > | <

• Logical Operators

⟨andor⟩ ::= and | or

• Parameters

⟨parameters⟩ ::= ⟨identifier⟩ | ⟨expression⟩ | ⟨function⟩

• Functions

⟨function⟩ ::= ( ((⟨expression⟩ ,)* ⟨expression⟩)? )
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• Boolean Values

⟨boolean⟩ ::= true | false

• Expressions

⟨expression⟩ ::= ⟨term⟩

| ⟨expression⟩ + ⟨term⟩

| ⟨expression⟩ - ⟨term⟩

| ⟨expression⟩ | ⟨term⟩

• Terms

⟨term⟩ ::= ⟨factor⟩

| ⟨expression⟩ * ⟨factor⟩

| ⟨expression⟩ / ⟨factor⟩

| ⟨expression⟩ % ⟨factor⟩

| ⟨expression⟩ & ⟨factor⟩

| ⟨expression⟩ ^ ⟨factor⟩

| ⟨expression⟩ » ⟨factor⟩

| ⟨expression⟩ « ⟨factor⟩

• Factors

⟨factor⟩ ::= ⟨element⟩

| - ⟨factor⟩

| + ⟨factor⟩

| ~ ⟨factor⟩

• Elements

⟨atom⟩ ::= ⟨number⟩

| ⟨identifier⟩

| ⟨function⟩

| ( ⟨expression⟩ )

• Identifiers

⟨identifier⟩ ::= id
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3.2.3 Example

To clear things up a little bit, let’s consider the following example and approach it

step by step:

Write an abstract description in ADL that describes the behavior of a program that

takes two pointers and swap the values of the memory locations they point by to.

1. The program requires two variables of a pointer type.

To declare variables in ADL, you need the name and type of the variable, then

you declare them as follows:

1 x: pointer

2 y: pointer

Alternatively, there is a shortcut in ADL that allows variables of same type to

be declared in one line, separated by commas.

1 x, y: pointer

2. The program performs two assignment operations. A valuable intuition a user

can leverage when writing ADL descriptions is if the behavior is described

directly in a literal manner, the user can write it exactly as described instead

of writing the implementation that leads to that behavior. For instance, in

this example, swapping two numbers implies that by the end of the program,

the first memory location must have the second value. Similarly, the second

memory location must have the value of the first. As such, there is no need to

use intermediate variables or arithmetic operations to express this behavior.

Therefore, we can express this behavior by writing x = y and y = x. It’s worth

noting that the pointer type in ADL doesn’t work the same way as in the C

or C++ programming languages. In ADL, there are neither dereferencing nor

arrow operators to manipulate pointers. However, the conversion engine of

this language handles them differently than the other types.
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3. Given that the program relies on pointer variables to swap those values, there

should be no need to return anything as an output since the swap operation will

be done in place. In this case, the Abstract Description Language introduces

a keyword that indicates that a particular program doesn’t return anything,

which is defined as None .

4. The program’s description doesn’t enforce any conditions that control the

execution of any action or return. Therefore, these statements execute under

any condition. Thus, ADL introduces a keyword that resembles this case,

which is defined as ANY.

There is a specific structure one must follow to write an ADL description.

First, it must have a section where all the variables are declared. The variable

declaration section always starts with the macro "var:" and for this example,

the abstract description is written as follows:

1 var:

2 x, y: pointer

The variable declaration section always starts with the macro "var:".

Secondly, it must have a section containing all the actions of the program and

the conditions that control its execution. The actions section always starts

with the macro "action:", and for this example, it is written as follows:

1 action:

2 x = y condition ANY

3 y = x condition ANY

Lastly, an abstract description must have a section containing all the return

statements of the program and the conditions that control their return. The

returns section always starts with the macro "return:", and for this example,

it is written as follows:
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1 return:

2 None condition ANY

All the analysis and steps we went through above culminated in a concise ADL

description, and it is written as follows:

1 var:

2 x, y: pointer

3 action:

4 x = y condition ANY

5 y = x condition ANY

6 return:

7 None condition ANY

3.2.4 A Study of Expressiveness

While the Abstract Description Language expresses a program in a high level of

abstraction, it cannot express programs whose behavior is determined by repetition

because recursions and loops are not allowed in ADL. Therefore, it’s not a Turing-

complete language.

Lemma 3.1. Let T be a function that maps an ADL description to a C program,

such that:

T : P(A) → P(C)

T is not a surjective function.

Proof. Suppose T is a surjective function. Then,

∀x ∈ P(C) ∃y ∈ P(A) s.t T (x) = y

However, given that ADL is not a Turing-complete language. Then, there must be a

C program whose description in ADL doesn’t exist, which contradicts the definition.

Therefore, T is not surjective.
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Corollary 3.1.1. Let E be a function that measures the expressiveness of a language

to describe programs. Then,

E(A) < E(C)

Where A denotes the Abstract Description Language (ADL) and C denotes the C

Programming Language.

Proof. From Lemma 4.1 we have T a non-surjective application, which implies that

it’s not bijective either. Thus, |P(A)| ≠ |P(C)|.

Given that ADL is not a Turing-complete language while C is. Then, |P(A)| <

|P(C)|.

Therefore,

E(A) < E(C)

Although the expressiveness of ADL is much smaller than C, there’s a good reason

why it should be. In a paper called "On the Expressive Power of Programming Lan-

guages," [8] the author, Matthias Felleisen, proved (Theorem 2.9 ) that an increase

of expressive power may destroy the semantic properties of the core language, and

this implies that if the expressiveness of ADL increases, it will lose its abstraction

quality, which is what ADL was developed to have.

3.3 Pyramid: The Conversion Engine

Despite having defined a vital part of this system, that is the Abstract Description

Language. Its ultimate benefit and premise necessitate the creation of a conversion

engine to convert an abstract description of a well-defined function or program

into ACSL contracts. As reiterated throughout the preceding sections, this type of

conversion is a sophisticated process. However, this section introduces a contract
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generator called Pyramid, for which several ideas have been developed to mitigate

the complexity of constructing such a conversion engine.

In the compiler design field, a "compiler" is an umbrella term that describes a tool

that takes in a source code written in one language and translates it into another

language. In practice, the output of this tool is often machine code, for instance:

gcc, which takes C source code and produces machine code. Though we are not

interested in translating into machine code, we are actually interested in translating

into another high-level language. Fortunately, a "transpiler" is a term that describes

such a tool. It is a subset of compilers that translate from one source to another,

and they are, in fact, often called source-to-source compilers. Within the context of

the conversion engine, Pyramid builds a basis from this category of compilers, such

that it constructs a dynamic pipeline that generates ACSL contracts from an ADL

description.

3.3.1 Parser

When building any compiling process, it always starts by doing a syntactic analysis

for the source language and parses it to get every token that obeys the grammar

that defines the language. Often, every sophisticated compiler implements a pars-

ing procedure developed from scratch to optimize the program’s performance most

efficiently. However, in our case, there was no need for a heavily customized parser

since the output is not something a machine can run. Therefore, Pyramid uses

a third-party tool called Lark to generate the parse tree from the ADL grammar.

Then, when an abstract description gets parsed, Pyramid employs a series of pro-

cedures to analyze the description and builds a structure of information about it,

which then gets used by intermediate pipelines to generate the description’s corre-

sponding ACSL contracts. The following figure is a visual explanation of how the

parser is constructed.
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Figure 7: Diagram of the ADL’s parser showing the construction of the parse tree.

3.3.2 Knowledge-Sharing Mechanism

When Pyramid starts to generate contracts, it uses the three {var, action, return}

blocks of an abstract description to get every possible contract of each block individ-

ually. However, if we consider each block as an independent node, we will definitely

not cover most of the necessary contracts, and that’s because some contracts can

only be generated if there is some sort of connection between blocks, and this is what

the Knowledge-Sharing Mechanism tries to solve. Before providing a formal defini-

tion for what the Knowledge-Sharing Mechanism actually is, it would be helpful to

start with an intuition that hopefully will help illustrate the idea.

Imagine that you, the reader, are practicing an exercise in mathematics. You con-

tinue solving questions until you stumble on a question that requires you to prove

some result. The idea here is that if you have solved the questions sequentially, you

will be able to use whatever results you proved to solve this question.

Inspired by the intuition above, we can define the Knowledge-Sharing Mechanism

(KSM) as a way of that allows sharing information between nodes in a complete

a graph constructed using the three ADL blocks {var, action, return}. Practically,
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Pyramid implements procedures to get each block to communicate with another by

leveraging the edges between all nodes, also called Knowledge-Sharing Channels.

Each channel dictates how two nodes communicate. For instance, the commu-

nication between var and action revolves around checking for overflows, memory

separation, pointer validity, and many more.

3.3.3 Design

After defining a core concept for the generation process, it makes sense to introduce

the design behind the conversion engine. First, Pyramid takes in an ADL description

and parses it using the parse tree constructed using Lark. Then, the parsed syntax

gets transformed using intermediate pipelines to get all the {var}, {action}, and

{return} objects in the abstract description, which have built-in methods to self-

convert into ACSL contracts. Next, all objects share information appropriately

using three Knowledge-Sharing Channels. Finally, all the generated contracts get

passed to the Contract Builder, which performs a clean build by eliminating any

redundancy and any inherent issues of the pipeline. The following diagram illustrates

how Pyramid works.

Figure 8: The Architecture of Pyramid
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3.3.4 Implementation

Figure 9: A class diagram explaining the OOP Design of Pyramid

As far as the implementation of transpilers goes, it is usually a sophisticated one,

and Pyramid is no exception. The latter is implemented in Python with an OOP

design that facilitates code management. The central class of this design is the

Expression class since it covers the construction of most things, ranging from IDs,

Assignments, Operations, and many more. Additionally, each object in Pyramid

has a method to reconstruct the original information.

Figure 10: Representation for the Knowledge-Sharing Channel between var and

action

As for the Knowledge-Sharing, the figure above shows how the Var and Action blocks

communicate via a channel that takes care of several things, such as Pointer Validity,
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Memory Separation, and related concepts for generating more complete contracts

later.

Finally, after all the knowledge is shared and contracts get generated, they go for

the final step: Contract Building. This process eliminates any redundancy and

inconsistency of contracts to maintain a logically correct set of contracts to establish

a complete verification.

3.3.5 Limitations

While Pyramid highlights a glimpse towards a systematically dynamic contract gen-

eration process, it’s still limited to what is possible to express with the Abstract De-

scription Language. The following list is all the verification constructs that Pyramid

can generate.

• Preconditions (requires)

– Overflow Checks

– Pointer Validity, as well as the read-validity checks

• Postconditions (ensures)

• Predicates

– Memory Separation

– Assignments

– Old Values

3.3.6 Beyond Limitations: Contract Refinement

Relying on systematic methods to generate contracts is an effective solution to

achieve predictability and correctness, but it doesn’t guarantee completeness. How-

ever, it can be used as an intermediate way to achieve it. Large language models,
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given how much data they are trained on, are great for coming up with conclu-

sive answers given the evidence. In this case, the evidence is whatever contracts

Pyramid generates. The probabilistic nature of LLMs enables them to be guided

when evidence is present, allowing them to deduce things far more complex than

the evidence itself. As such, our idea is to establish a refinement loop to improve

the completeness of contracts and to handle edge cases that might not be possible

to generate with Pyramid. In this refinement loop, Pyramid interacts with Chat-

GPT, which takes in whatever contracts the former has generated under a prompt

template that gives the sequential reasoning strategy and asks ChatGPT to improve

the results. Consequently, the latter tries to analyze and reason about the program

and hopefully will generate more complete contracts.

3.4 Sequential Reasoning Strategies

One of the difficulties we face in formal methods is mapping a program’s descrip-

tion into an implementation that satisfies the correctness metric in the verification

process. This difficulty is non-reversible because finding an implementation doesn’t

imply its correctness, and what’s more challenging is that it’s a procedure that

involves strict logical reasoning about the implications of each aspect of the descrip-

tion.

To understand the need for the concept introduced in this section, we must empha-

size reasoning as a conceptual practice that algorithmically guides machines to map

correspondences between descriptions stated in natural language and their ADL ver-

sions. When given a program’s statement, we always try to reason on the crucial

parts by analyzing the statement and constructing a reasoning scheme to understand

the program’s inner workings in a high level of abstraction, which guarantees the

expected behavior of the program without delving into the implementation details.

This section introduces Sequential Reasoning Strategies, an intermediate step toward

reaching a fully autonomous contract generation system.
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3.4.1 Intuition

Before providing a formal definition for Sequential Reasoning Strategies, it would

be helpful to start with an intuition that hopefully will help illustrate the idea.

Let’s recall the program’s description used in the section on the Abstract Description

Language.

Write an abstract description in ADL that describes the behavior of a program that

takes two pointers and swap the values of the memory locations they point by to.

Generating contracts just from a simple description, such as the one above, is a

complex task to be solved in one piece because the pipeline requires a level of

verbosity that allows the consideration of crucial information. When the above

description is presented to a formal methods expert, they can easily write contracts

for the description’s corresponding program. However, the task becomes significantly

more challenging when assigned to an AI model. In fact, it is quite daunting even for

humans, as we cannot assume everyone is proficient in Mathematics and Computer

Science. Therefore, efficiency in this task requires addressing multiple layers of

complexity one at a time, and one solution to the first layer is Sequential Reasoning

Strategies.

This concept will guide the AI model to learn how to reason with the given descrip-

tion of a program. Subsequently, it will learn to generate correct ADL descriptions

that inherit a high level of abstraction and formality while including an appropriate

level of verbosity.

3.4.2 Definition

A Sequential Reasoning Strategy (RS) is an algorithmic representation - expressed

in natural language - of a program’s description that mimics the reasoning process

involved in implementing the corresponding program sequentially through steps s,

such that:
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RS =
⋃
s

{s}

The reason why it is expressed in natural language is to avoid the injection of code

in the input of the large language model used to translate Sequential Reasoning

Strategies into ADL descriptions, which will increase the level of bias in those models,

thereby generating incorrect translations. Furthermore, there’s no simpler input for

the LLM we use than natural language because even pseudo-code is more complex

than natural language. Also, given the way LLMs are trained, the amount of text

in the dataset is way bigger than the amount of code. Therefore, it’s much more

efficient to use that to our advantage.

3.4.3 Example

To clear things up, consider the following example of a sequential reasoning strategy

that corresponds to the description of the program above.

s1 Define a function that takes two numbers, ’num1’ and ’num2’, as input.

s2 Add ’num1’ and ’num2’ together and store the result in ’num1’.

s3 Subtract ’num2’ from the updated ’num1’ and store the result in ’num2’.

s4 Subtract the original value of ’num2’ (now stored in ’num1’) from the updated

’num1’ and store the result in ’num1’.

s5 Return the updated values of ’num1’ and ’num2’.

s6 Return the updated values of ’num1’ and ’num2’.

This strategy breaks down the reasoning process into simple steps that specify what’s

relevant but preserve the abstraction. This is important because it helps the model

develop a chain of thought in the data that our ADL Generator 1 will train on,

improving its performance.
1A large language model, fine-tuned to translate a given sequential reasoning strategy to ADL



3.4. Sequential Reasoning Strategies 31

3.4.4 Integration

When the user wishes to generate contracts for a program, they need to describe

what the program must do. Our system takes in the description provided by the

user as input and prompts ChatGPT to generate a sequential reasoning strategy for

it. Then, the pipeline continues by using the generated strategy as an input of our

ADL generator, which translates the strategy from natural language to ADL.

The following figure shows how Sequential Reasoning Strategies are integrated in

the system.

Figure 11: A diagram that explains the integration of Sequential Reasoning Strate-

gies in the system.

As a final note for this section, since users’ descriptions for a program are usually

abstract, Sequential Reasoning Strategies serve as a conservation of verbosity to

reduce the complexity required for the ADL generator to translate the given de-

scription to ADL. The next section delves into what goes into the ADL Generator

with more detail.
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3.5 ADL Generator

Training an AI, especially a large language model, is not easy because it is a resource-

intensive task. It requires a massive amount of data and a large amount of compute

in order to achieve a good performance. In our case, we had none of these resources.

First, we have defined an entirely new language - ADL - for a model to learn,

hindering our ability to have a large amount of data to train the model. Secondly,

training an LLM requires a cluster of Graphical Processing Units (GPUs) to speed

up the training, something we don’t have. These restrictions have significantly

impacted the approach used to develop the model.

The ADL Generator is a large language model developed to translate a sequential

reasoning strategy to its corresponding ADL description. It happens prior to the

conversion engine, Pyramid, and after the sequential reasoning strategy generator,

ChatGPT. In this section, we will do a deep dive into the inner workings of the ADL

Generator model, from data collection to evaluation.

3.5.1 Data Collection

In modern deep learning architectures, the availability of high-quality data is neces-

sary to develop a highly-performing model. As large language models are becoming

more data-intensive, the task of training an LLM is restricted by the ability to col-

lect massive amounts of data, which is questionable the smaller the team responsible

for data collection is. This was the precise challenge we encountered when we began

developing the ADL Generator. The latter required a lot of data to be fine-tuned

and achieve the performance that we expected it to have, and that was not possible

in such a small team and period of time.

However, this process alleviates when we set to fine-tune the LLM instead of training

it. As the number of parameters in the model increases, the amount of compute

required to train the model will be huge because when training a model, it optimizes

every one of its parameters. Whereas, fine-tuning, in practice, will only train the

parameters of the last layer of the model, thereby reducing the number of trainable
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parameters and the number of GPUs required to train the model. Additionally,

when a model is fine-tuning, it will usually need less data than to train it, which is

exactly what we want.

3.5.1.1 Inputs and Outputs

To fine-tune a model, one needs to specify the input and output of the model. In

the context of the ADL Generator, as the name suggests, it generates an abstract

description in ADL as an output, and takes in a sequential reasoning strategy as

input. As such, the data collection process consists of writing sequential reasoning

strategies and their corresponding ADL translations.

However, given that each sequential reasoning strategy consists of steps, it’s more

efficient to label the ADL translation of each step as well; this way, the ADL genera-

tor will have more diverse data to train on and will help develop a sense of reasoning

when it tries to generate an ADL description, thus improving its accuracy.

Figure 12: Strategy-based Labeling

Figure 13: Step-based Labeling
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The figures above illustrate how the dataset is collected using two categories of

labeling: Strategy-based labeling and step-based labeling.

3.5.1.2 Early Experiments

After a manual collection that resulted in a total of 200 sequential reasoning strate-

gies and 784 steps with their ADL translations, we conducted some fine-tuning ex-

periments to see the extent of intervention required to achieve a good performance.

Though, we knew from the beginning that even a thousand training examples is not

sufficient enough to fine-tune a model. Nevertheless, we started experimenting with

different open-source models, namely: Llama 3-8b from Meta AI, and Gemma 2b

from Google.

As expected, these experiments resulted in a disastrous performance, indicating that

the amount of intervention will be really high. However, as tedious as this task may

seem, we came up with a solution that relatively mitigated the impact of having a

small amount of data, and that is the augmentation system.

3.5.1.3 The Augmentation System

3.5.1.3.1 Overview

This system is a method of augmentation that we’ve designed to help create some

diversification in our dataset and consequently collect more examples for our fine-

tuning process. The idea behind it is applying a two-layer augmentation procedure

incorporating a large language model and systematic techniques that we’ve devel-

oped to improve the results further. The first layer that comes in this procedure

is the use of an LLM2 - through Groq’s API3 - to generate different versions of

each example in our dataset. Then, each branch generated by the model will go

through the second layer of this system, which is systematic augmentation. The

latter uses an algorithm designed to randomly change the names of the variables

2We’ve used Llama 3 from Meta AI as our LLM.
3We used the API provided by Groq, which enables the integration of state-of-the-art large

language models such as Llama-3 with minimal latency by using the LPU Inference Engine.
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for each generated branch. Therefore, we ultimately created various versions of the

same generated branch but with other variable names. However, an important ques-

tion arises. Why do we have to apply the second layer? The answer to this question

is that it helps the model generalize beyond variable names and try to think about

how to use those variables rather than copy-pasting their names. The following

figure gives a visual explanation on how the augmentation system works.

Figure 14: The Augmentation System

3.5.1.3.2 AI-Generated Branches

The augmentation process starts by taking each step k in the sequential reasoning

strategy and constructing a prompt for the large language model - via Groq’s API

- that will generate n different versions of the step’s description. The prompt used

during this process is as follows:

prompt: Generate a JSON list of n different and diverse versions for the following

description: {Step’s Description} Such that the JSON Object would be as follows:

{"branches": V ERSION1, V ERSION2, ...}. Don’t include function name, just

write "function", "procedure", or anything appropriate instead. Also, don’t write

any code, just diversify the natural language expression. Preserve any variable names

included in the description.

The result of this operation is a JSON object that contains a list of n generated
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versions of the step’s description from the strategy. This procedure is applied to all

the strategies’ steps. Finally, we construct a matrix of all the generated branches.

The size of this matrix equals k× n, where k is the number of steps in the strategy,

and n is the number of versions generated by the LLM.

Figure 15: The Matrix of Generation

3.5.1.3.3 Systematically-Augmented Branches

After the matrix of generation gets constructed, the process continues via systematic

methods that create more diversity by generating m mutations of variable names

for each element in the matrix. The function designed to mutate variable names

incorporates a distribution mask by which it selects a random range of characters

from the ASCII Encoding. Then, while respecting the regular expression of identi-

fiers, it generates a random sequence of characters from the selected range, resulting

in random variable names. The question that arises from this technique is why

using randomness as a form of mutation? Well, there’s no simple answer to this

question because it depends on the context of its application. The intuition for this

comes from the fact that we want the ADL Generator to generalize beyond variable

names and reason about them semantically. The reasoning to further understand

this technique is after the ADL Generator fine-tunes, it should respect the syntactic

structure of the variable names included in the step description; however, it should

also use them appropriately according to the semantic meaning of the whole sequen-

tial reasoning strategy, this is achievable through randomness because we introduce

noisy data to the LLM, which helps it generalize and improve its performance. Fur-
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thermore, it has been shown that introducing noise through the model’s architecture

is a good regularization technique to achieve generalization4. Though, we are not

going to inject noise in the architecture but rather in the data.

Finally, we construct a tensor of all the systematically augmented branches, includ-

ing the source of the augmentation, i.e., the original branch that was mutated m

times. The size of this tensor equals k × n× (m+ 1), where k is the number of the

steps in the strategy, n is the number of versions generated by the LLM, and m is

the number of systematic mutations.

Figure 16: The Tensor of Mutation

Once the mutation tensor is created, we can collect more sequential reasoning strate-

gies. This process is done by iterating through the tensor and considering each col-

umn as a strategy. Therefore, for one strategy, we ended up with n× (m+ 1) more

strategies.

The following figure illustrates the process:

Figure 17: The Tensor of Mutation
4In the Dropout [9] paper, the authors showed that the model generalizes well when noise is

introduced.
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After the augmentation system’s implementation, it was used over the manually col-

lected data with n = 10 and m = 2, which led to the generation of 4000 Sequential

Reasoning Strategies and 15680 Steps, each with their corresponding ADL transla-

tion. Assembling the dataset, we had to balance the ratio between Strategy-based

Labeling and Step-based labeling. As such, we conducted other experiments of fine-

tuning smaller models to choose the best ratio. Consequently, we found that a 40%

Strategies and 60% Steps combination in the dataset will lead to better performance.

It’s worth noting that we didn’t experiment with larger combinations since the time

required to fine-tune the model gets longer as the size of the dataset increases.

• How to select a good mutation number m:

We’ve conducted multiple fine-tuning experiments with {m = 0,m = 2,m =

3}, and we found that the choice for the best m value is counter-intuitive.

When we evaluated the model with m = 0, it was not generalizing under

particular inputs, but with m = 2, it showed a good generalization factor of

12%. However, with m = 3, there was a performance drop of about 7% from

the experiment with m = 2, and we suspect that the issue goes to overfitting

because, essentially, we have created way more paths to the output. Therefore,

we speculate that the choice of m depends on the context of usage and the

amount of diversity in the dataset.

3.5.1.4 Issues

Despite the effort that went into developing the augmentation system, and increasing

the diversity of examples that allowed the collection of ∼ 14000 training examples

in the final dataset, it improved the performance only by an incremental amount

that guarantees that the model will fail to generate consistent results, and that’s

due to the following reasons:

1. If the core dataset is small, then no matter how much the augmentation gets

performed, it will not lead to stellar results because it doesn’t increase the

content’s diversity. Instead, it only increases the linguistic diversity of the



3.5. ADL Generator 39

training example, which means that it creates multiple paths for the same

output. The figure below illustrates the increase in path density when doing

such augmentation.

Figure 18: Before and After Augmentation

2. Generating a code-formatted language such as ADL is a really complex prob-

lem for a large language model to solve. Therefore, some form of guidance is

necessary to help mitigate these issues.

3.5.1.5 Instruction-Specific Prompting

When the performance of an LLM is hindered by the lack and complexity of data, a

valuable technique to use when training or fine-tuning, is to guide the model using

what’s called a System Prompt. It is a way to give the model some instructions

on how to deal with the given input, which will drastically improve the ability to

generate consistent results.

Generally, when a large-scale LLM is pretrained5, they often have one very detailed

system prompt to guide their generation process. Moreover, especially in these pre-

trained models, their system prompts usually serve as guardrails to avoid giving

sensitive and private information to the user. In our case, we thought of it as a

guide for the ADL generator to adapt, syntactically and semantically, to the ADL

format. However, given the diversity of the instructions, we thought of a technique
5GPT, Llama, and Claude are all examples of a pre-trained LLM.
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we call Instruction-Specific Prompting, in which we classified each instruction in our

dataset with a specific class, resulting in a set of 32 classes. Next, for each class,

we wrote a system prompt with an average of 900 tokens6. Finally, when the model

starts fine-tuning, each training example will get processed with its system prompt,

thereby learning multiple ways to deal with each instruction. To exemplify, here’s a

snippet from the system prompt of the var class:

Figure 19: A snippet from the var class’ system prompt

3.5.1.6 More Experiments

After we wrote the system prompts for all 32 instruction classes, we conducted more

fine-tuning experiments to see how well the model performed. Surprisingly, the

results were vastly different. They became more consistent, syntactically formatted,

and semantically correct. This shows how much Instruction-Specific Prompting has

impacted the training and, consequently, the generation of ADL translations.

3.5.2 Fine-Tuning

After all the steps that went into the data collection phase, we started the fine-

tuning process of a larger ADL Generator model. This process consisted of multiple

steps:

6We had used the tokenizer of the pre-trained model that we fine-tuned, Llama 3.
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3.5.2.1 Model Selection

Before fine-tuning a model, one should select the model offering the best perfor-

mance for their downstream task. Furthermore, since open-source models are more

accessible than ever, the difficulty of choice is now alleviated. Within the context

of the ADL Generator, we experimented with multiple open-source models, namely

Llama 37[10] Instruct 8b, Gemma[11] 2b and 7b, and Starcoder 2[12].

1. Starcoder 2

This model was a big achievement in the AI community when it first launched.

It is an LLM trained with a large amount of code in multiple languages, in-

cluding Python, C, C++, C#, Java, JavaScript, and many more, for code

generation tasks. However, when we fine-tuned it on our data, it didn’t gen-

eralize as much as we expected, and it often hallucinates and tries to inject

programming languages in ADL’s syntax.

2. Gemma Models

Gemma models are smaller-scale LLMs from Google, trained on trillions of

tokens with small architectures (with 2 and 7 Billion Parameters) to solve

general tasks. Unfortunately, when we experimented with them, they showed

a poor performance that didn’t satisfy our needs8.

3. Llama 3 Instruct

Llama 3 is the new open-source large language model from Meta AI. We ex-

perimented with the 8 Billion parameters model, and surprisingly, it showed

good generalization and accuracy in translating sequential reasoning strategies

into ADL. Therefore, we chose this LLM as our base model for fine-tuning.

7At the time of writing, the only paper available is the Llama 2 paper.
8These models have also experienced some issues that were fixed later, regarding their context

length.
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3.5.2.2 Template

When a large language model trains, it usually has a prompt template to train it

efficiently. As such, when someone wishes to fine-tune that model on their data,

they should use the exact template it was trained on. Therefore, we processed our

dataset by adapting it to the template of Llama 3, which is specified as follows:

Figure 20: The fine-tuning template of Llama 3

• {{ .System }} corresponds to the system prompt. In this case, that would

be one of the 32 system prompts we wrote.

• {{ .Prompt }} corresponds to the input prompt. In this case, it is the

sequential reasoning strategy.

• {{ .Response }} corresponds to the output of the input prompt. In this

case, it is the ADL translation of the given sequential reasoning strategy.

3.5.2.3 Hyperparameters and Techniques

Fine-tuning large language models such as Llama 3 with a size of 8 Billion pa-

rameters can be computationally expensive and resource-intensive, often requiring

substantial hardware and long training times. Fortunately, thanks to recent contri-

butions, we finally get to leverage techniques like LoRA[13] (Low-Rank Adaptation)

and QLoRA[14] (Quantized Low-Rank Adaptation) to address these challenges by

significantly reducing the number of trainable parameters and the memory footprint

during the fine-tuning process. LoRA achieves this by decomposing weight updates

into low-rank matrices, which simplifies the update process and makes it more effi-

cient. QLoRA further optimizes this by applying quantization techniques, reducing

the precision of certain computations and thus further lowering the memory and

computational requirements.
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The following list offers the configuration of our fine-tuning:

• Rank (r) The rank of the low-rank matrices used to decompose weight up-

dates. This controls the trade-off between approximation accuracy and pa-

rameter efficiency. We set it to r = 64.

• Alpha (α) A scaling factor applied to the low-rank matrices. This helps in

controlling the magnitude of the updates. We set it to α = 16.

• Learning Rate The learning rate for training the model. We set it to 2×10−4.

• Quantization Bit-width The number of bits used for quantizing the model

parameters. We set it to 4-bit.

3.5.3 Limitations

Despite the impressive capabilities of large language models, they still suffer from

several limitations, and the ADL Generator is no exception.

• The likelihood of hallucination increases proportionally with the complexity

of the sequential reasoning strategy. Moreover, its inherent bias will force the

model to write irrelevant code that most likely doesn’t obey the syntax of

ADL.

• The ADL Generator’s capabilities are limited by the size of the base model.

As the model grows, its capabilities increase. To exemplify this, when given

a mathematical program that uses division operations, sometimes the model

will miss putting a condition on the non-zero nature of a variable in the de-

nominator and assume that it is not. As such, when these issues accumulate,

they will hurt the correctness of the model by a significant factor.

3.5.4 Beyond Limitations: Syntax Correction

Given the model’s limitations and syntactic error susceptibility, making it difficult to

process in the conversion engine, we thought of a way to mitigate occurring syntax
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errors. It establishes a syntax correction loop in which the ADL Generator interacts

with ChatGPT to correct syntactic errors in the generated ADL, which is done by

giving a grammar template of the Abstract Description Language to ChatGPT and

using it to detect any text that doesn’t obey the ADL grammar. Then, it tries

to correct it depending on its semantics. This syntax correction loop increases the

chances of generating correct ADL descriptions, which consequently leads to better

results in the conversion phase.
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Results

4.1 Snippets of Sequential Reasoning Strategies

Figure 21: A snippet for a sequential reasoning strategy that computes the integral

of
∫ b

a
sin(x) dx from a to b written by ChatGPT (in JSON Format).

45
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Figure 22: A snippet for a sequential reasoning strategy that computes the division

of an integer by 2 written by ChatGPT (in JSON Format).

4.2 Evaluating the ADL Generator

We fine-tuned the model for one epoch of training (about 3 hours and 37 minutes)

using an NVIDIA A100 GPU from Google via Colab Pro Notebooks, which resulted

in a significant training loss drop as shown in the figure below.

Figure 23: A plot depicting the drop in training loss of the model as it undergoes

fine-tuning.
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It’s worth noting that to enhance efficiency, we used the Unsloth notebook to fine-

tune the model.

Generally, when evaluating large language models, it is usually standard to have

a benchmarking dataset on which we measure how well the model performs, such

as Math, Reasoning, Coding, etc. In our case, there’s no benchmarking dataset

other than the validation set we split from the training set. Furthermore, each

benchmarking dataset corresponds to a metric we can use to measure the model’s

performance on that dataset quantitatively, and there are several metrics such as

BLEU[15], ROUGE[16], Accuracy, etc. However, as the contract generation pro-

cess - via Pyramid - depends on a strict syntactic format, we haven’t found any

efficient metric for such evaluation. Nevertheless, we employed a manual approach,

examining dozens of examples and scoring each on a scale of 1 to 5. When scoring,

we look for syntactic correctness and then for semantic correctness. Finally, after

the manual individual evaluation, we average the scores to get a global performance

measurement. As a result, over 60 samples, the ADL Generator achieved 81.6%

average correctness on the manual evaluation.

4.2.0.1 A Snippet

Figure 24: An actual output of the ADL Generator for a sequential reasoning strat-

egy.

The figure above is the ADL Generator’s response for a sequential reasoning strategy,

and it shows a good syntax and semantic generalization of the model. However, as

was emphasized in the limitations, the model’s capabilities are limited by size. Thus,
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it is susceptible to weakly expressed conditions. For example, the response above

assumes that ’a’ is not zero, which is not a strong aassumption, especially if we seek

specification completeness.

4.3 Pyramid and Contract Refinement

After a sequential reasoning strategy gets translated into ADL, the latter will get

converted into ACSL contracts via Pyramid.

Figure 25: Actual contracts generated by Pyramid for an ADL of a program that

returns the maximum of two numbers.

Figure 26: The ChatGPT’s refined version of The contracts generated by Pyramid

above.
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As illustrated in the figure above, to transcend the limitations of the conversion

engine and achieve a closer approximation of completeness, the generated contracts

are subsequently sent to ChatGPT, which refines them into a more comprehensive

set of contracts

4.4 On The Performance of The System

After a sequential reasoning strategy gets translated to ADL, contract generation

becomes deterministically systematic via the conversion engine. As such, we could

claim that the system’s performance is the same as the ADL Generator’s perfor-

mance. However, when measuring the performance of a contract generation system,

it’s up to the developers to decide what metric of priority they need. In other

words, sometimes, they could prioritize the completeness of the specifications, and

other times, they could prioritize a particular spectrum of specifications. Therefore,

evaluating the system as a whole necessitates the development of efficient metrics.

Nevertheless, from the prototype results we got in the development phase, we could

see a glimpse of hope surrounding this system.
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Perspectives and Conclusion

5.1 Perspectives

To compensate for the completeness of our work, we envision continuing the progress

as soon as possible, as we already have plans for more contributions that will help

improve the results of the system. Firstly, in the experiments that we conducted,

we relied on Frama-C to check whether the generated contracts are correct or not.

However, as programs get complex, the verification runtime of Frama-C would get

longer as well. The issue here is a longer runtime will hinder our ability to establish

an autonomous feedback loop between the system and Frama-C, which can provide

a way to guide the model toward correct contracts. Secondly, as was proven in the

ADL’s study of expressiveness, increasing the verbosity of ADL would contradict the

goal of developing the language in the first place. As such, we are trying to find ways

to inject language constructs that maximize our use of ADL while also maintaining

the same level of abstraction. Moreover, while the completeness of Pyramid is not

guaranteed, we have some ideas to expand the set of contracts that it can generate

and improve the robustness of the contract refinement loop that we have established

with ChatGPT. Ultimately, these plans will be carried out with careful precision

and compiled in a research publication, including a thorough evaluation to gauge

the system’s potential in industry-scale environments.

50
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5.2 Conclusion

In conclusion, formal methods play a significant role in the development of reliable,

robust, and safe software. It contributes to the endeavors of building technologies

that change our lives for the better, and with the rise of intelligent systems, safety

is needed more than ever. Autonomous vehicles and Robots are rapidly advancing

to become normalized in our society. Given the potential integration of these tech-

nologies into our daily lives, it’s becoming more prominent to develop guardrails for

them. Yet, these guardrails are complex to build because they rely on a high level

of rigorousness that necessitates significant expertise. However, as AI continuously

shows impressive solutions to a wide variety of complex problems, it became clear

that we can help small teams to compensate for the requirement of expertise, en-

abling a budget reduction for safety and thereby setting a safety standard for all

emerging applications.
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While formal verification experts face myriad challenges in writing contracts,
AI offers an accelerated doorway to achieving a certain level of automation
within the task of contract generation. This report introduces a
Neurosymoblic system that synergizes state-of-the-art techniques in
Generative AI with systematic approaches in Language and Compiler Designs
to generate ACSL specifications, thereby facilitating software verification.

Alors que les experts en vérification formelle sont confrontés à une multitude
de défis lors de la rédaction de contrats, l'IA offre une voie accélérée vers
l'obtention d'un certain niveau d'automatisation dans la tâche de génération
de contrats. Ce rapport présente un système neurosymoblique qui synergise
les techniques de pointe en IA générative avec des approches systématiques
en matière de conception de langage et de compilateur pour générer des
spécifications ACSL, facilitant ainsi la vérification des logiciels.


