

 Faculté des Sciences

Université Ibn Tofail

Faculté des Sciences, Kénitra

 Mémoire de Projet de Fin d’Etudes

Master Intelligence Artificielle et Réalité Virtuelle

End-to-End AI-Driven Chatbot for
Optimizing Hotel Guest Interactions

Établissement d’accueil : T e t r i c k s

Elaboré par : Mr. : EL BOURKI Otmane

Encadré par : Mr. : NOURI Anass (FSK-UIT)

 Mr. : FITZPATRICK Sean (Tetricks)

Soutenu le 25 juillet 2024, devant le jury c omposé de :

- Pr. NOURI Anass (FSK Université Ibn Tofaïl)

- Pr. MESSOUSSI Rochdi (FSK Université Ibn Tofaïl)

- Pr. BOUKIR Khaoula (ENSC Université Ibn Tofaïl)

- Pr. BOUJIHA Tarik (FSK Université Ibn Tofaïl)

Année universitaire 2023/2024

Kingdom of Morocco
Ibn Tofail University

Faculty of Science, Kenitra

End-of-Studies Thesis

For the attainment of the Master’s degree in Artificial Intelligence and Virtual Reality

Specialization: Artificial Intelligence

Host Organization: Tetricks

under the theme :

End-to-End AI-Driven Chatbot for
Optimizing Hotel Guest Interactions

Prepared by:
Mr. Otmane El Bourki

Supervised by:
Mr. Anasse Nouri
(Ibn Tofail University)
Mr. Sean Fitzpatrick
(Tetricks)

Defended on July 25, 2024

Academic year 2023/2024

Dedication

“
TO my beloved family, for your unconditional love,
unwavering support, and constant encouragement.

TO my parents, for your sacrifices and for instilling in me
the values of hard work, perseverance, and humility.

TO my siblings, for your motivating words and steadfast
belief in me.

TO all my dear ones, to each and every one of you,

Thank you.

”
- Otmane El Bourki

I

Acknowledgments

First and foremost, I thank Allah, the Almighty, for granting me the courage and
patience necessary to complete this work.

I extend my heartfelt thanks to my supervisor, Dr. ANASS Nouri, for his invaluable
assistance, patience, and encouragement. His critical insights were crucial in structuring
this work and enhancing the quality of various sections.

I also wish to express my deep gratitude to my CEO, Mr. SEAN Fitzpatrick at
Tetricks, for his immense support, meticulous guidance, and the wealth of advice and
information he provided with unmatched patience and professionalism.

My sincere thanks go to Mr. REMCO Van Uitert, full-stack developer at Tetricks,
for his constant support and invaluable contributions to this project.

Lastly, I would like to thank everyone who contributed, directly or indirectly, to the
completion of this work.

II

Abstract

During my tenure at Tetricks from January to April 2024, I spearheaded the devel-
opment of a Retrieval-Augmented Generation (RAG) chatbot designed to enhance hotel
guest interactions. This project aimed to revolutionize customer service by providing
quick and accurate responses to inquiries about hotel services and amenities.

The project commenced with a detailed exploration of the financial implications of
deploying Language Models (LLMs), comparing proprietary solutions to self-managed
options on cloud platforms like Google Cloud Platform (GCP). A comprehensive cost-
benefit analysis led to the decision to implement a self-managed LLM configuration on
GCP, ensuring optimal performance while adhering to budget constraints.

My primary responsibility was the implementation of the RAG-based chatbot. This
involved designing a robust system architecture and developing a sophisticated backend
API, enabling the chatbot to leverage advanced Natural Language Processing (NLP) tech-
niques for understanding and generating responses. Simultaneously, the system retrieved
relevant information from a knowledge base specific to hotel operations. Deployment on
GCP ensured scalability and reliability, laying the foundation for further enhancements.

Throughout February and March, I optimized the chatbot’s data ingestion processes
and refined its data preprocessing layer. This included testing various data ingestion
methods and implementing a robust preprocessing layer to enhance the quality of inputs
feeding into the LLM. These efforts significantly improved the chatbot’s efficiency and
accuracy in handling client queries.

Continued development efforts in March and April expanded the chatbot’s capabilities
to include multilingual support, facilitating seamless query management across multiple
languages. This enhancement broadened the chatbot’s accessibility and appeal to inter-
national clients, thereby enhancing overall customer satisfaction.

In conclusion, the project delivered a robust RAG-based chatbot solution that signifi-
cantly improved customer interactions in the hospitality sector. It showcased my expertise
in leveraging advanced NLP and machine learning techniques to develop impactful AI so-
lutions tailored to real-world applications.

Keywords: RAG Chatbot, Natural Language Processing, Customer Interaction Man-
agement, GCP Deployment.

III

Contents

Dedication . I

Acknowledgments . II

Abstract . III

Generale Introduction . 1

1 State of the Art in Chatbots . 5
1.1 Introduction . 6
1.2 Overview of Chatbots . 6

1.2.1 Definition and Types . 6
1.3 Generative and Retrieval-Based Chatbots 7

1.3.1 Generative Models . 7
1.3.2 Retrieval-Based Models . 7

1.4 Introduction to Retrieval-Augmented Generation (RAG) 8
1.4.1 Concept and Benefits . 8

1.5 Core Technologies and Frameworks for RAG 8
1.5.1 RAG Models . 8
1.5.2 Embedding Techniques . 8
1.5.3 Vector Databases . 8
1.5.4 Libraries and Frameworks . 8

1.6 Key Techniques and Methodologies . 9
1.6.1 Retrieval Techniques . 9
1.6.2 Integration of Retrieval and Generation 9
1.6.3 Evaluation Metrics . 9

1.7 Applications and Use Cases . 9
1.7.1 Customer Support . 9
1.7.2 Healthcare . 10
1.7.3 E-commerce . 10
1.7.4 Education . 10

1.8 Challenges and Limitations of RAG . 10
1.8.1 Scalability . 10
1.8.2 Data Quality and Bias . 10
1.8.3 Latency and Efficiency . 10
1.8.4 Interpretability and Explainability 10

1.9 Future Directions and Research Opportunities 11
1.9.1 Advancements in NLP . 11

IV

Contents

1.9.2 Improved Integration Techniques 11
1.9.3 Enhanced Evaluation Methods . 11
1.9.4 Ethical Considerations . 11

1.10 Conclusion . 11

2 Needs Analysis . 12
2.1 Overview . 13
2.2 Guest Needs Analysis . 13

2.2.1 Identifying Common Guest Queries and Requests 13
2.2.2 Pain Points in Current Guest Interaction Processes 13
2.2.3 Desired Improvements with Chatbot Implementation 14

2.3 Functional Requirements . 14
2.3.1 Real-Time Response Capability . 14
2.3.2 Multilingual Support . 14
2.3.3 Integration with Hotel Management Systems 14
2.3.4 Personalized Interaction . 15
2.3.5 Availability . 15

2.4 Non-Functional Requirements . 15
2.4.1 Security and Privacy . 15
2.4.2 Scalability . 15
2.4.3 Reliability and Uptime . 15
2.4.4 User-Friendly Interface . 15

2.5 Stakeholder Needs Analysis . 16
2.5.1 Hotel Guests . 16
2.5.2 Hotel Staff . 16

2.6 Interaction Scenarios . 16
2.6.1 Pre-Arrival . 16
2.6.2 Onsite Experience . 17
2.6.3 Post-Departure . 17

2.7 Desired Features and Capabilities . 17
2.7.1 Natural Language Understanding (NLU) 17
2.7.2 Contextual Awareness . 17
2.7.3 Proactive Assistance . 17
2.7.4 Multimodal Interaction . 18

2.8 Summary of Findings . 18
2.9 Conclusion . 18

3 Design and Implementation . 19
3.1 Design . 20

3.1.1 Introduction . 20
3.1.2 System Architecture . 20
3.1.3 Design Decisions . 21

3.2 Large Language Models (LLMs) . 22
3.2.1 Overview of LLMs . 22
3.2.2 OpenChat: Advancing Open-source Language Models with Mixed-

Quality Data . 23

V

Contents

3.2.3 Challenges and Future Directions 24
3.3 Embedding Models . 25

3.3.1 Overview of Embeddings . 25
3.3.2 mxbai-embed-large-v1: Advanced Embedding Model 25
3.3.3 Challenges and Future Directions 26

3.4 Imporatnt concepts in RAG . 27
3.4.1 Chunking . 27
3.4.2 System Prompts . 29
3.4.3 Maintaining Chat History in RAG 33
3.4.4 Retrievers in RAG . 34
3.4.5 Parent Document Retriever . 35

3.5 Implementation . 37
3.5.1 Introduction . 37
3.5.2 Technical Architecture of the Solution 37
3.5.3 Installation . 38
3.5.4 Usage . 39
3.5.5 Troubleshooting . 39
3.5.6 Architecture . 39

3.6 Code Walk-through . 41
3.6.1 Environment Setup . 41
3.6.2 Language Model Initialization . 41
3.6.3 Embeddings and Vector Store . 42
3.6.4 Document Loaders and Splitters 42
3.6.5 Document Retriever . 43
3.6.6 Document Compressors and MultiQueryRetriever 43
3.6.7 Document Transformers . 45
3.6.8 Prompt Template . 45
3.6.9 Conversational Retrieval Chain . 46
3.6.10 OAuth Callback and Message Handling 47
3.6.11 Technologies Used . 48

3.7 Conclusion . 52

4 Testing and Results . 53
4.1 Introduction . 54
4.2 The Rag Chatbot . 54
4.3 Objective Evaluation Metrics . 57

4.3.1 Accuracy and Precision . 57
4.3.2 Response Time . 57
4.3.3 Error Rate . 58
4.3.4 Completion Rate . 58

4.4 Subjective Evaluation Metrics . 58
4.4.1 User Satisfaction . 58
4.4.2 User Engagement . 59
4.4.3 Ease of Use . 59

4.5 Performance Under Load . 59
4.5.1 Scalability . 59

VI

Contents

4.6 Specific Evaluation of RAG Systems . 60
4.6.1 Context Retrieval . 60
4.6.2 Content Generation . 60
4.6.3 Business Logic . 60

4.7 Conclusion . 60

Conclusion and Perspectives . 62

Appendices . 68

A Definitions . 69

B Data Section . 73

VII

List of Figures

1 Tetricks Logo. 3

1.1 Rag diagram. 9

3.1 Benchmark results of Openchat-3.6 against other LLMs. 24
3.2 Benchmark results of mxbai-embed-large-v1 against other models. 26
3.3 Character Chunking 1. 28
3.4 Character Chunking 2. 28
3.5 Recursive Character Chunking. 28
3.6 BM25 formula. 35
3.7 Parent Document Retrieval explained. 36
3.8 Technical Architecture of the RAG Chatbot Solution. 37
3.9 GCP Logo. 48
3.10 LangChain Logo. 48
3.11 Qdrant Logo. 49
3.12 MixedBread AI Logo. 49
3.13 OpenChat Logo. 49
3.14 Python Logo. 50
3.15 Docker Logo. 50
3.16 LiteLLM Logo. 50
3.17 Ollama Logo. 51

4.1 Authentication. 54
4.2 Authentication Done. 55
4.3 Retrieving information and formulating response. 56
4.4 Response with sources. 56

VIII

List of Abbreviations and Acronyms

AI Artificial Intelligence

API Application Programming Interface

GCP Google Cloud Platform

LLM Large Language Model

NLP Natural Language Processing

RAG Retrieval-Augmented Generation

UI User Interface

MLOps Machine Learning Operations

VM Virtual Machine

AWS Amazon Web Services

API Application Programming Interface

TF TensorFlow

PyTorch Python Torch

DNN Deep Neural Network

ML Machine Learning

DL Deep Learning

IX

Generale Introduction

Context

The hotel industry is undergoing significant transformations driven by technological ad-
vancements and evolving guest expectations. With the proliferation of online travel agen-
cies (OTAs) and the increasing preference for mobile bookings, hotels face the dual chal-
lenge of enhancing guest experiences while maintaining operational efficiency. Industry
reports indicate that hotels worldwide are struggling to meet these modern demands due
to rising competition, fluctuating demand, and escalating operational costs. As guests
increasingly seek seamless and personalized experiences, there is a pressing need for inno-
vative solutions that can address these challenges.

Problematic

Despite the advancements in technology, hotels continue to grapple with several persis-
tent issues. The shift towards digital interactions has intensified competition, making it
difficult for hotels to maintain customer loyalty and direct bookings amidst the dominance
of OTAs. Additionally, the need for round-the-clock customer support and personalized
guest experiences has placed considerable strain on hotel staff, leading to increased op-
erational costs and inefficiencies. Traditional methods of guest interaction are no longer
sufficient to meet the high expectations of modern travelers, necessitating the adoption
of more sophisticated and automated solutions.

Objectives

This project aims to develop and deploy an AI-driven chatbot specifically tailored for the
hospitality sector, with the following objectives:

Enhanced Customer Support

The chatbot will provide 24/7 customer support to handle a wide range of guest queries
and requests. It will be capable of:

• Accurately understanding and interpreting user requests and intentions through

1

Generale Introduction

natural language conversations.

• Providing relevant and personalized responses based on the context of the conver-
sation.

• Seamlessly integrating into business customer management systems, thereby en-
hancing operational efficiency and customer satisfaction.

• Continuously evolving and adapting through machine learning, improving the qual-
ity of interactions over time.

Improved Guest Satisfaction

By delivering prompt and accurate responses, the chatbot aims to enhance guest satis-
faction levels. Features include:

• Real-Time Assistance: Providing immediate assistance without requiring guests to
wait for a human response, thereby improving overall service efficiency.

• Feedback Collection: Gathering feedback from guests throughout their stay to con-
tinuously improve service quality and personalize guest experiences.

Operational Efficiency and Cost Reduction

The implementation of the AI-driven chatbot will also focus on:

• Automating routine tasks such as check-in/out procedures, room service requests,
and billing inquiries, allowing staff to focus on more personalized guest interactions.

• Reducing operational costs associated with customer service by minimizing the need
for extensive human intervention.

• Improving revenue through increased direct bookings and upselling opportunities
facilitated by the chatbot’s personalized recommendations and interactions.

Presentation of the Host Organization

Tetricks, a pioneering hospitality technology company, specializes in intelligently man-
aging hotel room assignments based on guest preferences and operational efficiencies.
Founded with the support of École Polytechnique and as a laureate of the 2022 HEC
Digital Entrepreneurship program, Tetricks is poised to revolutionize how hotels optimize
their guest experiences through advanced AI-driven solutions. Tetricks understands cus-
tomer demands and intelligently assigns hotel rooms. Supported by École Polytechnique
and winner of HEC Paris’s Digital Entrepreneurship program.

2

Generale Introduction

Figure 1: Tetricks Logo.

Technology and Innovation

Tetricks stands out with its advanced use of artificial intelligence to improve operational
efficiency and customer experience. By integrating sophisticated algorithms, Tetricks
dynamically adjusts room assignments based on real-time customer preferences and data,
ensuring optimal management of hotel resources.

Utilizing AI in the Hotel Industry

As an early-stage startup, Tetricks envisions transforming the hotel industry by leveraging
artificial intelligence in various aspects of hotel management. Key AI-driven initiatives
include:

Personalized Guest Experiences

By analyzing data from previous stays, preferences indicated during bookings, and real-
time feedback, Tetricks’ AI system can tailor services to meet individual guest needs,
creating a personalized and memorable experience for each guest.

Predictive Maintenance and Resource Management

AI algorithms predict maintenance needs and optimize resource allocation, reducing down-
time and ensuring that hotel facilities are always in top condition. This proactive approach
not only enhances guest satisfaction but also reduces operational costs.

Dynamic Pricing and Revenue Management

Tetricks uses AI to analyze market trends, competitor pricing, and historical booking data
to dynamically adjust room rates. This ensures competitive pricing while maximizing
revenue, adapting to fluctuations in demand with precision.

Enhanced Customer Support

Through AI-powered chatbots and automated systems, Tetricks provides 24/7 customer
support, addressing common inquiries, handling bookings, and resolving issues promptly.
This enhances the overall guest experience by ensuring immediate assistance and reducing
wait times.

3

Generale Introduction

Operational Efficiency

AI-driven analytics help hotel managers make informed decisions about staffing, inven-
tory, and other operational aspects. By identifying patterns and predicting future needs,
Tetricks ensures that hotels run smoothly and efficiently.

Conclusion

The hospitality industry is at a pivotal moment, grappling with evolving guest expec-
tations and operational complexities. AI-driven technologies, particularly chatbots pow-
ered by natural language processing and machine learning, offer a transformative solution.
These innovations promise to not only enhance guest satisfaction but also streamline oper-
ations and reduce costs by automating routine tasks and delivering personalized, real-time
assistance.

This thesis aims to contribute to this transformative wave by developing and deploying
an AI-driven chatbot specifically tailored for the hospitality sector. Focused on improving
customer support, elevating guest experiences, and seamlessly integrating with existing
hotel management systems, this project explores state-of-the-art technologies in chatbots,
conducts a detailed requirements analysis, proposes robust design principles, outlines
effective implementation strategies, and advocates for rigorous testing methodologies.

By demonstrating the potential of AI to optimize staff resources, improve service
efficiency, and meet the dynamic needs of modern hotel guests and operators, this thesis
underscores the strategic importance of AI applications in hospitality. It seeks to provide
actionable insights and practical guidance for adopting AI-driven solutions effectively,
thereby fostering innovation and setting new benchmarks for service excellence in the
hospitality landscape.

4

Chapter 1

State of the Art in Chatbots

5

Chapter 1. State of the Art in Chatbots

1.1 Introduction

The evolution of chatbots has been marked by significant advancements in natural lan-
guage processing (NLP) and machine learning. Retrieval-Augmented Generation (RAG)
chatbots represent a hybrid approach that leverages the strengths of both generative and
retrieval-based models, addressing several limitations of previous methods. This chapter
provides a comprehensive overview of the state-of-the-art in RAG chatbots, tracing their
historical development, underlying technologies, key methodologies, and applications.

1.2 Overview of Chatbots

1.2.1 Definition and Types

Chatbots are software applications designed to simulate human conversation through text
or voice interactions. They can be broadly categorized into two types: rule-based and
AI-based chatbots.

Rule-Based Chatbots: These rely on predefined rules and scripts to generate re-
sponses. They follow simple ”if-then” logic and are limited in their ability to handle
complex or unexpected queries.

AI-Based Chatbots: These use machine learning algorithms to understand and
generate human-like responses. AI-based chatbots are further divided into generative
models and retrieval-based models.

Historical Development

The development of chatbots dates back to the 1960s with the creation of ELIZA, a
rule-based system designed to mimic a psychotherapist. In the 1990s, ALICE (Artificial
Linguistic Internet Computer Entity) further advanced the capabilities of rule-based chat-
bots using AIML (Artificial Intelligence Markup Language). The introduction of machine
learning and deep learning techniques marked a significant shift in chatbot development.
In the early 2010s, models like Cleverbot and Siri began to leverage these techniques
for more sophisticated interactions. The development of deep learning-based NLP mod-
els, such as Word2Vec and GloVe, paved the way for the creation of more advanced AI
chatbots.

Significance and Applications

Chatbots have found applications across various industries, including customer service,
healthcare, education, and e-commerce. They enhance user engagement, provide 24/7
support, and improve operational efficiency.

6

Chapter 1. State of the Art in Chatbots

1.3 Generative and Retrieval-Based Chatbots

1.3.1 Generative Models

Overview

Generative models generate responses by predicting the next word in a sequence based
on the context provided by the user input. These models are trained on large datasets
and can generate coherent and contextually relevant responses.

Examples

Prominent generative models include GPT-3 and GPT-4 by OpenAI, BERT by Google,
and T5 by Google Research.

Strengths and Limitations

Generative models excel in creating fluent and contextually appropriate responses. How-
ever, they can produce plausible but incorrect answers, and their responses may sometimes
lack factual accuracy.

1.3.2 Retrieval-Based Models

Overview

Retrieval-based models select the most appropriate response from a predefined set based
on the user input. These models use techniques like similarity search and ranking algo-
rithms to retrieve relevant responses.

Examples

Techniques such as Dense Passage Retrieval (DPR) and BM25 are commonly used in
retrieval-based models.

Strengths and Limitations

Retrieval-based models provide accurate and relevant responses but are limited by their
reliance on predefined responses and may struggle with novel queries.

7

Chapter 1. State of the Art in Chatbots

1.4 Introduction to Retrieval-Augmented Generation
(RAG)

1.4.1 Concept and Benefits

Retrieval-Augmented Generation (RAG) combines the strengths of generative and retrieval-
based models. It retrieves relevant information from a large corpus and uses this infor-
mation to generate more accurate and contextually appropriate responses. This approach
helps mitigate the limitations of purely generative models by grounding responses in fac-
tual information.

How RAG Works

RAG models consist of two main components: a retriever and a generator. The retriever
searches a database to find relevant documents or passages based on the user query.
The generator then uses this retrieved information to generate a coherent and accurate
response.

1.5 Core Technologies and Frameworks for RAG

1.5.1 RAG Models

Facebook’s RAG model is a notable example, combining Dense Passage Retrieval (DPR)
with a generative model like BART or T5.

1.5.2 Embedding Techniques

Embedding techniques, such as mixedbread-ai/mxbai-embed-large-v1, are used to create
dense vector representations of text, enabling effective semantic search and retrieval.

1.5.3 Vector Databases

Vector databases like Qdrant, FAISS, and Pinecone are essential for storing and retrieving
dense vector representations efficiently.

1.5.4 Libraries and Frameworks

Tools such as Langchain, Haystack, and Hugging Face Transformers facilitate the develop-
ment and deployment of RAG chatbots by providing pre-trained models and easy-to-use
interfaces.

8

Chapter 1. State of the Art in Chatbots

1.6 Key Techniques and Methodologies

1.6.1 Retrieval Techniques

Effective retrieval techniques involve creating and searching dense vector representations
of text. Dense Passage Retrieval (DPR) is a popular method, utilizing bi-encoder archi-
tecture to encode queries and passages into vectors for efficient retrieval.

1.6.2 Integration of Retrieval and Generation

Integrating retrieval results into generative models involves using the retrieved information
as context for the generator. This can be done through techniques like concatenation or
attention mechanisms, where the generator pays attention to the relevant parts of the
retrieved information.

1.6.3 Evaluation Metrics

Evaluating RAG chatbots involves metrics such as BLEU (Bilingual Evaluation Under-
study), ROUGE (Recall-Oriented Understudy for Gisting Evaluation), and F1 Score.
These metrics measure the quality, relevance, and accuracy of the generated responses.

Figure 1.1: Rag diagram.

1.7 Applications and Use Cases

1.7.1 Customer Support

RAG chatbots are widely used in customer service to provide accurate and timely re-
sponses to customer queries, enhancing user satisfaction and reducing operational costs.

9

Chapter 1. State of the Art in Chatbots

1.7.2 Healthcare

In healthcare, RAG chatbots assist in providing medical information, scheduling appoint-
ments, and offering preliminary diagnoses based on symptoms reported by users.

1.7.3 E-commerce

E-commerce platforms use RAG chatbots for product recommendations, order tracking,
and handling customer inquiries, thereby improving the shopping experience.

1.7.4 Education

Educational applications of RAG chatbots include tutoring systems that provide person-
alized learning experiences and answer student queries with accurate information.

1.8 Challenges and Limitations of RAG

1.8.1 Scalability

Scaling RAG chatbots to handle large volumes of queries and data requires significant
computational resources and efficient architectures.

1.8.2 Data Quality and Bias

The quality of data used for training and retrieval is crucial. Bias in training data can
lead to biased responses, which is a significant concern in developing fair and ethical AI
systems.

1.8.3 Latency and Efficiency

Ensuring low latency and high efficiency in RAG chatbots involves optimizing retrieval
and generation processes. Techniques like approximate nearest neighbor (ANN) search
can help improve retrieval speed.

1.8.4 Interpretability and Explainability

The need for interpretable and explainable AI is critical, especially in sensitive applications
like healthcare and finance. Developing methods to explain how RAG chatbots generate
their responses is an ongoing research area.

10

Chapter 1. State of the Art in Chatbots

1.9 Future Directions and Research Opportunities

1.9.1 Advancements in NLP

Future advancements in NLP, such as better language models and improved embedding
techniques, will enhance the capabilities of RAG chatbots.

1.9.2 Improved Integration Techniques

Research on more effective ways to integrate retrieval and generation components will
lead to more accurate and contextually relevant responses.

1.9.3 Enhanced Evaluation Methods

Developing more robust and comprehensive evaluation metrics will improve the assessment
of RAG chatbot performance and help in fine-tuning models.

1.9.4 Ethical Considerations

Addressing ethical issues, such as data privacy, bias, and transparency, is crucial for the
responsible deployment of RAG chatbots. Ongoing research in ethical AI will contribute
to developing fair and trustworthy systems.

1.10 Conclusion

The state of the art in RAG chatbots represents a significant advancement in chatbot
technology, combining the strengths of generative and retrieval-based models to provide
accurate, relevant, and contextually appropriate responses. Continuous research and
development in this field will lead to further improvements in chatbot capabilities and
applications, addressing current challenges and exploring new opportunities.

11

Chapter 2

Needs Analysis

12

Chapter 2. Needs Analysis

2.1 Overview

The purpose of this needs analysis is to comprehensively identify and evaluate the re-
quirements for deploying a Retrieval-Augmented Generation (RAG) chatbot to enhance
guest interaction in a hotel setting. The analysis is based on data collected through sur-
veys, interviews with hotel staff and guests, focus groups, and analysis of existing hotel
operations data. This report will serve as a foundational document to guide the design,
development, and implementation of the chatbot.

2.2 Guest Needs Analysis

2.2.1 Identifying Common Guest Queries and Requests

Hotel guests frequently have a variety of queries and requests that need to be addressed
promptly and accurately to ensure a pleasant stay. The most common queries include:

• Check-in/check-out processes: Guests often inquire about check-in and check-
out times, procedures, and options for early check-in or late check-out.

• Room service orders: Guests request meals, beverages, and other services to be
delivered to their rooms.

• Housekeeping requests: Guests request additional towels, toiletries, room clean-
ing, and maintenance services.

• Information about hotel amenities and services: Guests seek information
about the hotel’s facilities such as the gym, spa, pool, restaurants, and business
center.

• Local attractions and directions: Guests ask for recommendations on local
attractions, restaurants, transportation options, and directions.

• Booking modifications: Guests need assistance with extending their stay, chang-
ing room types, or canceling reservations.

• Frequently asked questions (FAQs): Questions about Wi-Fi access, parking,
hotel policies, and event schedules.

2.2.2 Pain Points in Current Guest Interaction Processes

Current guest interaction processes often involve the following pain points:

• Delays in response time from staff: Guests experience waiting times when staff
are occupied, leading to frustration and dissatisfaction.

• Language barriers and communication issues: Guests and staff may face
challenges communicating effectively due to language differences.

13

Chapter 2. Needs Analysis

• Inconsistent information provided by different staff members: Guests may
receive varying responses to the same query, causing confusion.

• Limited availability of staff, especially during peak hours or late nights:
Guests may struggle to get assistance during busy times or outside regular working
hours.

2.2.3 Desired Improvements with Chatbot Implementation

Deploying a RAG chatbot can significantly improve guest interaction by:

• Faster response times: Providing instant responses to guest queries, reducing
waiting times.

• Consistent and accurate information: Ensuring uniformity in the information
provided to guests.

• Multilingual support: Offering assistance in multiple languages, enhancing com-
munication with international guests.

• Enhanced convenience and accessibility: Enabling guests to access services
and information anytime, anywhere.

• Personalized interactions based on guest preferences: Tailoring responses
and recommendations to individual guest profiles.

2.3 Functional Requirements

2.3.1 Real-Time Response Capability

The chatbot must be capable of providing instantaneous responses to guest queries, han-
dling multiple simultaneous interactions without delays. This requires robust natural
language processing (NLP) capabilities to understand and respond accurately to diverse
guest inputs.

2.3.2 Multilingual Support

To cater to a global clientele, the chatbot should support multiple languages, including
but not limited to English, Spanish, French, German, Chinese, and Japanese. It should
automatically detect the guest’s language preference and switch accordingly.

2.3.3 Integration with Hotel Management Systems

The chatbot needs to seamlessly integrate with the hotel’s existing management systems,
including property management systems (PMS), booking engines, room service manage-

14

Chapter 2. Needs Analysis

ment systems, and housekeeping systems. This ensures real-time synchronization and
accurate processing of guest requests.

2.3.4 Personalized Interaction

Utilizing guest profile information, the chatbot should deliver personalized responses and
recommendations. This includes remembering past interactions, preferences, and special
requests to enhance the guest experience.

2.3.5 Availability

The chatbot must be available around the clock, ensuring that guests can access services
and information at any time, including late nights and peak hours. This improves the
overall guest experience by providing continuous support.

2.4 Non-Functional Requirements

2.4.1 Security and Privacy

The chatbot must ensure the security and privacy of guest data. This includes implement-
ing encryption for data transmission and storage, adhering to data protection regulations
such as GDPR, and maintaining stringent access controls to prevent unauthorized access.

2.4.2 Scalability

The chatbot should be scalable to handle increasing numbers of users and interactions,
especially during peak seasons. This involves using scalable cloud-based infrastructure
that can dynamically adjust to varying loads.

2.4.3 Reliability and Uptime

High reliability and minimal downtime are critical for the chatbot’s effectiveness. This
requires robust infrastructure with redundancy and failover mechanisms to ensure con-
tinuous operation even in the event of hardware or software failures.

2.4.4 User-Friendly Interface

The chatbot interface must be intuitive and easy to navigate, providing a seamless ex-
perience across multiple devices such as smartphones, tablets, and in-room devices. This
includes clear prompts, easy-to-follow instructions, and visually appealing design.

15

Chapter 2. Needs Analysis

2.5 Stakeholder Needs Analysis

2.5.1 Hotel Guests

Guests expect quick, accurate, and personalized responses to their queries. They prefer
a conversational, human-like experience and need to feel comfortable and secure sharing
information with the chatbot.

2.5.2 Hotel Staff

Front Desk Staff

The chatbot can reduce the front desk staff’s workload by handling routine queries, al-
lowing them to focus on more complex guest interactions. Staff will need training on how
to leverage the chatbot for improved guest service.

Concierge Services

The chatbot can assist concierge staff by providing local recommendations and handling
simple requests. This enables concierge staff to focus on more personalized and high-value
services.

Housekeeping

Housekeeping staff can benefit from streamlined communication and efficient task assign-
ment through chatbot integration. This ensures timely responses to guest requests and
better task management.

Management

Management needs real-time monitoring and analytics on guest interactions, insights into
common guest issues, and integration with CRM systems for enhanced guest relation-
ship management. This helps in making data-driven decisions to improve overall guest
experience.

2.6 Interaction Scenarios

2.6.1 Pre-Arrival

• Automated booking confirmations: The chatbot can send instant booking con-
firmations and provide information on hotel policies and services.

16

Chapter 2. Needs Analysis

• Handling special requests: Guests can use the chatbot to request early check-
in, airport transfers, or specific room preferences, which the chatbot processes and
communicates to the relevant staff.

2.6.2 Onsite Experience

• Room service ordering: Guests can order meals and services through the chatbot,
which forwards requests to the kitchen or housekeeping.

• Information about hotel facilities and events: The chatbot provides details
about hotel amenities, events, and schedules, helping guests plan their activities.

• Local recommendations and directions: The chatbot offers suggestions on
local attractions, restaurants, and provides directions, enhancing the guest’s local
experience.

2.6.3 Post-Departure

• Collecting guest feedback and reviews: The chatbot solicits feedback from
guests after their stay, helping the hotel gather valuable insights.

• Updating guests on loyalty programs and future promotions: The chat-
bot keeps guests informed about loyalty program updates, future promotions, and
encourages repeat bookings.

2.7 Desired Features and Capabilities

2.7.1 Natural Language Understanding (NLU)

The chatbot must have advanced NLU capabilities to accurately comprehend diverse
guest queries, including those with varied phrasing and context. This ensures precise and
relevant responses.

2.7.2 Contextual Awareness

The chatbot should maintain context across multiple interactions, recognizing returning
guests and previous conversations to provide a seamless and personalized experience.

2.7.3 Proactive Assistance

The chatbot can offer proactive suggestions based on guest behavior, such as recommend-
ing dining options during meal times or sending reminders about upcoming events.

17

Chapter 2. Needs Analysis

2.7.4 Multimodal Interaction

Supporting text, voice, and potentially visual inputs, the chatbot should provide a con-
sistent experience across different modes of interaction, accommodating guest preferences
and accessibility needs.

2.8 Summary of Findings

The needs analysis reveals that a RAG chatbot can significantly enhance hotel guest
interaction by addressing common queries promptly, reducing staff workload, providing
consistent and accurate information, and offering personalized and multilingual support.
The functional and non-functional requirements identified will guide the design and im-
plementation of a chatbot that meets the diverse needs of hotel guests and staff.

2.9 Conclusion

Deploying a RAG chatbot in a hotel setting addresses critical pain points in guest interac-
tion, improves operational efficiency, and enhances overall guest satisfaction. By ensuring
real-time, personalized, and secure interactions, the chatbot can become an indispensable
tool for modern hotel management, offering a superior and seamless experience for guests
and staff alike

18

Chapter 3

Design and Implementation

19

Chapter 3. Design and Implementation

3.1 Design

3.1.1 Introduction

In this chapter, we provide an overview of the architecture and design goals of our AI-
driven chatbot tailored for hotels. The chatbot aims to enhance customer support, stream-
line interactions, and seamlessly integrate with hotel management systems to improve
overall guest experience.

3.1.2 System Architecture

This section details the key components, interactions, and data flows within the chatbot
system:

Overview

The chatbot system consists of interconnected components designed to handle user in-
teractions, retrieve and generate responses, manage context, and integrate with hotel
systems.

Key Components

User Interface (UI)

• Purpose: Provides a user-friendly interface for guests to interact with the chatbot.

• Features: Supports natural language input and displays responses in a readable
format.

• Implementation: Utilizes web-based interfaces (e.g., React, Vue.js) or mobile
applications for accessibility.

Retrieval Module

• Purpose: Retrieves relevant information from hotel databases and knowledge
bases.

• Techniques: Implements keyword-based retrieval (e.g., TF-IDF, BM25) and neural
retrievers (e.g., DPR, Sentence-BERT) for accuracy.

• Integration: Connects with Elasticsearch for efficient retrieval of structured and
unstructured data.

20

Chapter 3. Design and Implementation

Generation Module

• Purpose: Generates contextually relevant responses based on retrieved informa-
tion.

• Models: Employs pre-trained language models (e.g., GPT-4, T5) fine-tuned on
hotel-specific data.

• Customization: Adapts responses to user queries, incorporating hotel-specific ter-
minology and contextual relevance.

Context Manager

• Purpose: Manages conversation history and ensures coherent responses.

• Components: Includes dialogue state trackers (e.g., Rasa, Dialogflow) and mem-
ory networks for context persistence.

• Functionality: Integrates retrieved context and generated content to maintain
conversational flow and relevance.

Integration Layer

• Purpose: Interfaces with hotel management systems (e.g., reservation systems,
billing APIs).

• Data Retrieval: Retrieves real-time information (e.g., room availability, booking
status) for personalized responses.

• Security: Ensures secure API communication and data encryption to protect guest
information and maintain privacy.

Scalability and Load Balancing

• Scalability: Deploys on cloud platforms (e.g., AWS, GCP) with Docker containers
and Kubernetes for efficient scaling.

• Load Balancing: Distributes user requests across multiple instances to optimize
resource utilization and maintain performance.

3.1.3 Design Decisions

This section discusses the rationale behind architectural choices, including technology
selection and scalability considerations:

21

Chapter 3. Design and Implementation

Technology Stack

• Programming Language: Python chosen for its versatility and rich ecosystem in
natural language processing.

• Vectorstore: Qdrant selected for efficient retrieval of structured and unstructured
data.

• Large Language Models: Openchat utilized for generating natural language re-
sponses, fine-tuned on hotel-specific datasets.

Scalability Considerations

• Cloud Deployment: Deployed on GCP for scalability, utilizing Docker containers
and Kubernetes orchestration.

Security Measures

• Data Protection: Secure APIs and encryption mechanisms implemented to pro-
tect guest information and ensure privacy.

• Authentication: OAuth used for user authentication and access control.

Usability and Integration

• User Interface Design: Designed for ease of use and accessibility, supporting
multiple languages.

• Integration with Hotel Systems: APIs and webhooks integrated with hotel
management systems for seamless data exchange and real-time updates.

3.2 Large Language Models (LLMs)

3.2.1 Overview of LLMs

Large Language Models (LLMs) are neural network-based models that have been trained
on extensive text data. These models, especially when built using transformer architec-
tures, exhibit exceptional capabilities in understanding and generating human language.
They are employed in a variety of applications, including chatbots, translation services,
content generation, and more.

22

Chapter 3. Design and Implementation

3.2.2 OpenChat: Advancing Open-source Language Models with
Mixed-Quality Data

Introduction to OpenChat

OpenChat is an open-source language model designed to enhance the capabilities of LLMs
using mixed-quality data. Unlike traditional models that rely on high-quality curated
datasets, OpenChat leverages a combination of high-quality and lower-quality data to
improve robustness and performance.

Architecture and Training

OpenChat is built on transformer architecture, similar to other state-of-the-art LLMs like
GPT-3. The key difference lies in its training methodology:

• Data Collection: OpenChat aggregates data from diverse sources, including web
scraping, user-generated content, and curated datasets. This results in a rich and
varied training corpus that includes both high-quality and mixed-quality data.

• Data Preprocessing: Advanced preprocessing techniques are used to filter and
clean the data, ensuring that the model can learn effectively from the mixed-quality
input. This includes tokenization, normalization, and noise reduction strategies.

• Training Procedure: The model is trained using a two-phase approach. In the
first phase, the model learns from high-quality data to establish a strong founda-
tional understanding. In the second phase, it is fine-tuned with mixed-quality data
to enhance its ability to handle diverse and potentially noisy inputs.

Performance and Capabilities

OpenChat has demonstrated significant improvements in several NLP tasks, including:

• Text Generation: Produces coherent and contextually relevant text, even when
prompted with ambiguous or poorly structured inputs.

• Conversation Handling: Exhibits enhanced ability to manage conversations,
making it suitable for chatbot applications where user inputs can vary widely in
quality.

• Adaptability: Shows robustness in understanding and generating language across
different domains and styles, attributed to its exposure to mixed-quality data during
training.

Benchmarks

23

Chapter 3. Design and Implementation

Figure 3.1: Benchmark results of Openchat-3.6 against other LLMs.

Applications

OpenChat’s versatility makes it applicable in numerous fields:

• Customer Service: Enhances automated customer support systems with its im-
proved conversation handling capabilities.

• Content Creation: Assists in generating high-quality content for blogs, social
media, and marketing materials.

• Education: Provides intelligent tutoring systems with the ability to understand
and respond to diverse student queries.

3.2.3 Challenges and Future Directions

Despite its advancements, OpenChat faces challenges such as:

• Data Quality Management: Balancing the inclusion of mixed-quality data with-
out compromising the overall performance.

• Ethical Considerations: Addressing biases and ensuring the responsible use of
the model in applications.

24

Chapter 3. Design and Implementation

3.3 Embedding Models

3.3.1 Overview of Embeddings

Embeddings are dense vector representations of words or phrases that capture their se-
mantic meanings. These representations allow for efficient and effective processing of text
data in various NLP tasks.

3.3.2 mxbai-embed-large-v1: Advanced Embedding Model

Introduction to mxbai-embed-large-v1

The mxbai-embed-large-v1 model is a state-of-the-art embedding model designed to pro-
vide high-quality semantic representations of text. It leverages advanced techniques to
generate embeddings that capture nuanced relationships between words and phrases.

Architecture and Training

The architecture of mxbai-embed-large-v1 is based on transformer networks, which have
proven to be highly effective for embedding tasks:

• Model Size: The ”large” designation indicates a substantial number of parameters,
enabling the model to capture complex semantic relationships.

• Training Data: Trained on a diverse and extensive corpus, including multilingual
and domain-specific datasets, to ensure comprehensive language understanding.

• Training Procedure: Utilizes techniques like masked language modeling and con-
trastive learning to enhance the quality of the embeddings. These techniques help
the model learn contextual relationships and distinguish between semantically sim-
ilar and dissimilar words.

Performance and Capabilities

The mxbai-embed-large-v1 model excels in various embedding-related tasks:

• Semantic Similarity: Accurately measures the similarity between words and
phrases, making it suitable for tasks like information retrieval and recommenda-
tion systems.

• Contextual Understanding: Generates context-aware embeddings that reflect
the meaning of words in different contexts, improving performance in tasks like
sentiment analysis and named entity recognition.

• Multilingual Support: Capable of producing high-quality embeddings for multi-
ple languages, facilitating cross-lingual NLP applications.

25

Chapter 3. Design and Implementation

Benchmarks

Figure 3.2: Benchmark results of mxbai-embed-large-v1 against other models.

Applications

The versatility of mxbai-embed-large-v1 enables its use in numerous applications:

• Search Engines: Enhances search relevance by providing better semantic matching
of queries and documents.

• Recommendation Systems: Improves the accuracy of recommendations by un-
derstanding user preferences and item similarities.

• Text Classification: Boosts the performance of classification tasks by providing
rich semantic features.

3.3.3 Challenges and Future Directions

While mxbai-embed-large-v1 is a powerful model, it faces several challenges:

• Resource Intensity: Training and deploying large embedding models require sig-
nificant computational resources.

• Bias Mitigation: Ensuring that the embeddings are free from biases present in
the training data is crucial for fair and ethical applications.

26

Chapter 3. Design and Implementation

3.4 Imporatnt concepts in RAG

3.4.1 Chunking

Definition

Chunking in the context of AI and natural language processing (NLP) refers to the process
of breaking down a large text or dataset into smaller, manageable pieces, or ”chunks.” This
technique is vital for processing extensive texts, ensuring that the AI models can handle
data more efficiently and accurately.

Importance

• Efficiency: Chunking improves the processing speed of AI models, allowing them
to work with smaller pieces of data at a time.

• Accuracy: By focusing on smaller chunks, models can provide more precise re-
sponses and analyses.

• Memory Management: It helps in managing memory more effectively, especially
for models with limited computational resources.

Character Chunking

• Description: Divides text based on a fixed number of characters.

• Example: Text divided into chunks of 100 characters, affecting text flow but serving
as a foundational method.

Now let’s see that in action with an example. Imagine a text that reads:
"""Dive into the joy of chunking , where each piece is a puzzle of its

own. As you assemble them, a
mosaic of understanding takes
shape. This engaging mental
exercise sparks creativity and
hones analytical skills.

It's like solving a puzzle , finding satisfaction in each arrangement.
Approach chunking with curiosity

and a playful spirit. Let it be
an intellectual playground ,

making the process not only
enjoyable but deeply satisfying.

Happy chunking!"""

If we decide to set our chunk size to 100 and no chunk overlap, we’d end up with the
following chunks. As you can see, Character Chunking can lead to some intriguing, albeit
sometimes nonsensical, results, cutting some of the sentences in their middle.

27

Chapter 3. Design and Implementation

Figure 3.3: Character Chunking 1.

By choosing a smaller chunk size, we would obtain more chunks, and by setting a
bigger chunk overlap, we could obtain something like this:

Figure 3.4: Character Chunking 2.

Recursive Character Chunking

• Description: Continues dividing text recursively until reaching a minimum chunk
size.

• Example: Maintains text structure better than basic character chunking, suitable
for varied text formats.

Again, let’s use the same example in order to illustrate this method. With a chunk size
of 100, and the default settings for the other parameters, we obtain the following chunks:

Figure 3.5: Recursive Character Chunking.

Document Specific Chunking

• Description: Aligns chunking with document sections like paragraphs or subsec-
tions.

• Example: Preserves original document structure, ensuring coherence and rele-
vance.

Token-based Chunking

• Description: Divides text based on token count, crucial for respecting language
model limits.

• Example: Uses tokenizers like SpacyTextSplitter to ensure accuracy in chunking.

28

Chapter 3. Design and Implementation

Semantic Chunking

• Description: Groups text based on semantic relationships, enhancing retrieval
accuracy.

• Example: Suitable for maintaining semantic integrity but slower than other meth-
ods.

Agent Chunking

• Description: Mimics human chunking process, still experimental due to processing
time and cost.

• Example: Not widely implemented yet; aims to automate chunking processes ef-
fectively.

3.4.2 System Prompts

Definition

System prompts are predefined inputs or instructions given to an AI model to guide its
behavior or responses. These prompts are crucial for directing the model’s focus and
ensuring it performs specific tasks accurately.

Importance

• Guidance: Prompts help in steering the AI model towards relevant information,
ensuring more accurate and contextually appropriate responses.

• Customization: They allow for the customization of model behavior based on
specific tasks or user requirements.

• Efficiency: By providing clear instructions, system prompts reduce the ambiguity
in model responses, leading to faster and more reliable outputs.

Types

• Instructional Prompts: Directives that guide the model to perform specific tasks,
such as ”summarize the following text” or ”translate this paragraph.”

• Contextual Prompts: Inputs that provide context to the model, helping it un-
derstand the broader situation or background.

• Clarification Prompts: Used to ask the model to clarify or elaborate on previous
responses, ensuring clear and comprehensive answers.

29

Chapter 3. Design and Implementation

ChatGPT system prompt

"""You are ChatGPT , a large language model trained by OpenAI , based on
the GPT-4 architecture.

Image input capabilities: Enabled

Conversation start date: 2023-12-19T01:17:10.597024"

Deprecated knowledge cutoff: 2023-04-01

Tools section:

Python:

When you send a message containing Python code to python , it will be
executed in a stateful Jupyter
notebook environment.

Python will respond with the output of the execution or time out after 60.0
seconds.

The drive at '/mnt/data' can be used to save and persist user files.

Internet access for this session is disabled.

Do not make external web requests or API calls as they will fail.

Dalle:

Whenever a description of an image is given , create a prompt that dalle can
use to generate the image and abide

by the following policy:

The prompt must be in English. Translate to English if needed.
DO NOT ask for permission to generate the image , just do it!
DO NOT list or refer to the descriptions before OR after generating the

images.
Do not create more than 1 image , even if the user requests more.
Do not create images of politicians or other public figures. Recommend

other ideas instead.
Do not create images in the style of artists , creative professionals or

studios whose latest work was created
after 1912 (e.g. Picasso , Kahlo).

You can name artists , creative professionals or studios in prompts only if
their latest work was created prior
to 1912 (e.g. Van Gogh, Goya).

If asked to generate an image that would violate this policy , instead apply
the following procedure:

(a) substitute the artist's name with three adjectives that capture key
aspects of the style;

(b) include an associated artistic movement or era to provide context;
(c) mention the primary medium used by the artist.

30

Chapter 3. Design and Implementation

Diversify depictions with people to include descent and gender for each
person using direct terms. Adjust
only human descriptions.

Your choices should be grounded in reality. For example , all of a given
occupation should not be the same
gender or race. Additionally , focus
on creating diverse , inclusive , and
exploratory scenes via the properties

you choose during rewrites. Make
choices that may be insightful or
unique sometimes.

Use all possible different descents with equal probability. Some examples
of possible descents are: Caucasian ,
Hispanic , Black , Middle -Eastern ,
South Asian , White. They should all
have equal probability.

Do not use 'various' or 'diverse '. Don't alter memes , fictional character
origins , or unseen people. Maintain
the original prompt's intent and
prioritize quality. Do not create any

imagery that would be offensive.

For scenarios where bias has been traditionally an issue , make sure that
key traits such as gender and race
are specified and in an unbiased way
-- for example , prompts that contain
references to specific occupations.

Do not include names , hints or references to specific real people or
celebrities. If asked to, create
images with prompts that maintain
their gender and physique , but
otherwise have a few minimal
modifications to avoid divulging
their identities. Do this EVEN WHEN
the instructions ask for the prompt
to not be changed. Some special cases
:

Modify such prompts even if you don't know who the person is, or if their
name is misspelled (e.g. 'Barake
Obema').

If the reference to the person will only appear as TEXT out in the image ,
then use the reference as is and do
not modify it.

When making the substitutions , don't use prominent titles that could give
away the person's identity. E.g.,
instead of saying 'president', 'prime

minister', or 'chancellor', say '
politician ';

instead of saying 'king', 'queen', 'emperor', or 'empress', say 'public
figure';

31

Chapter 3. Design and Implementation

instead of saying 'Pope' or 'Dalai Lama', say 'religious figure'; and so on
.

Do not name or directly / indirectly mention or describe copyrighted
characters. Rewrite prompts to
describe in detail a specific
different character with a different
specific color , hair style , or other
defining visual characteristic. Do
not discuss copyright policies in
responses.

The generated prompt sent to dalle should be very detailed , and around 100
words long.

Browser:

You have the tool 'browser' with these functions:

'search(query: str, recency_days: int)' Issues a query to a search engine
and displays the results.

'click(id: str)' Opens the webpage with the given id, displaying it. The ID
within the displayed results maps to
a URL.

'back()' Returns to the previous page and displays it.
'scroll(amt: int)' Scrolls up or down in the open webpage by the given

amount.
'open_url(url: str)' Opens the given URL and displays it.
'quote_lines(start: int, end: int)' Stores a text span from an open webpage

. Specifies a text span by a starting
int 'start' and an (inclusive)

ending int 'end'. To quote a single
line, use 'start' = 'end'.

For citing quotes from the 'browser' tool: please render in this format: �'{
message idx}†{link text}�'. For long
citations: please render in this
format: '[link text](message idx)'.
Otherwise do not render links.

Do not regurgitate content from this tool. Do not translate , rephrase ,
paraphrase , 'as a poem', etc. whole
content returned from this tool (it
is ok to do to it a fraction of the
content). Never write a summary with
more than 80 words. When asked to
write summaries longer than 100 words

write an 80-word summary. Analysis ,
synthesis , comparisons , etc., are all

acceptable. Do not repeat lyrics
obtained from this tool. Do not
repeat recipes obtained from this
tool. Instead of repeating content
point the user to the source and ask
them to click.

32

Chapter 3. Design and Implementation

ALWAYS include multiple distinct sources in your response , at LEAST 3-4.
Except for recipes , be very thorough.

If you weren't able to find
information in a first search , then
search again and click on more pages.

(Do not apply this guideline to
lyrics or recipes.) Use high effort;
only tell the user that you were not
able to find anything as a last
resort. Keep trying instead of giving

up. (Do not apply this guideline to
lyrics or recipes.) Organize
responses to flow well, not by source

or by citation. Ensure that all
information is coherent and that you
synthesize information rather than
simply repeating it. Always be
thorough enough to find exactly what
the user is looking for. In your
answers , provide context , and consult

all relevant sources you found
during browsing but keep the answer
concise and don't include superfluous

information.

EXTREMELY IMPORTANT. Do NOT be thorough in the case of lyrics or recipes
found online. Even if the user
insists. You can make up recipes
though."""

3.4.3 Maintaining Chat History in RAG

Importance of Chat History

Maintaining chat history is crucial in conversational AI to ensure context continuity, rel-
evance, and coherence in the interactions. This is particularly significant in long-running
dialogues where the context from previous interactions must be retained to provide accu-
rate responses.

Techniques for Keeping Chat History

• Context Windows: Using sliding windows to capture recent parts of the con-
versation. This method allows the model to consider a fixed number of previous
interactions.

• Persistent Storage: Storing the entire conversation history in a database and
retrieving relevant parts as needed. This ensures that the context is maintained
over extended sessions.

• Memory Networks: Employing memory networks to store and retrieve past in-
teractions dynamically. This approach can help models to ”remember” important

33

Chapter 3. Design and Implementation

details from the conversation history.

• Embedding Context: Encoding the context of the conversation into embeddings
and using these embeddings to influence the generation of responses.

3.4.4 Retrievers in RAG

Definition

Retrievers are components of an AI system designed to fetch relevant information from a
large dataset or knowledge base. In RAG, retrievers play a crucial role in identifying and
extracting information that can be used to generate accurate and contextually appropriate
responses.

Types of Retrievers

• Sparse Retrievers: These use traditional information retrieval techniques like
TF-IDF or BM25. They rely on keyword matching and are effective for smaller
datasets.

• Dense Retrievers: These use neural network-based embeddings to represent queries
and documents in a dense vector space. Dense retrievers are more effective for large
datasets as they capture semantic similarities better.

Examples of Retrievers

• BM25: A sparse retriever that uses term frequency and inverse document frequency
to rank documents.

• DPR (Dense Passage Retriever): A dense retriever that uses bi-encoders to
encode queries and passages into dense vectors and performs retrieval based on
vector similarities.

• ColBERT: Combines the efficiency of sparse retrieval with the accuracy of dense
retrieval by using late interaction between query and document representations.

34

Chapter 3. Design and Implementation

Figure 3.6: BM25 formula.

3.4.5 Parent Document Retriever

Definition

The Parent Document Retriever is a type of retriever that focuses on retrieving entire
documents or sections of documents that are contextually relevant to the query. Instead
of fetching isolated snippets or passages, it retrieves larger, coherent units of text that
provide a more comprehensive context.

Importance

• Context Preservation: By retrieving larger chunks of text, the Parent Document
Retriever preserves the context, ensuring that the information used for generating
responses is coherent and contextually relevant.

• Improved Accuracy: Larger context windows help in maintaining the logical flow
of information, leading to more accurate and meaningful responses.

• Reduced Fragmentation: Avoids the problem of fragmented information re-
trieval, which can lead to disjointed and less informative responses.

Advantages

• Enhanced Coherence: Ensures that the retrieved information is contextually
rich, enhancing the coherence of the generated responses.

• Better Information Utilization: Provides a broader context, allowing the AI to
utilize information more effectively and generate more informed responses.

35

Chapter 3. Design and Implementation

• User Satisfaction: Leads to more satisfying user interactions by maintaining the
flow and relevance of information throughout the conversation.

Figure 3.7: Parent Document Retrieval explained.

36

Chapter 3. Design and Implementation

3.5 Implementation

3.5.1 Introduction

In today’s hospitality industry, providing exceptional guest experience is crucial for main-
taining customer satisfaction and loyalty. One innovative approach is the implementation
of a RAG (Retrieval-Augmented Generation) chatbot, designed to streamline guest in-
teractions and improve service delivery. This project aims to develop and deploy such a
chatbot system to enhance the overall guest experience in hotels.

3.5.2 Technical Architecture of the Solution

Figure 3.8: Technical Architecture of the RAG Chatbot Solution.

The RAG chatbot system in this Figure leverages a powerful cloud-based architecture
powered by Google Cloud Platform (GCP) to deliver its functionality. It utilizes a
combination of advanced AI technologies, including natural language processing (NLP)
frameworks like LangChain for chatbot orchestration, integrated with hotel management
systems via APIs for real-time guest information retrieval and service requests processing.
The system also employs Qdrant for vector database storage, mxbai-embed-large-v1
for embedding model, and openchat-3.6 for chat LLM. Python is the programming

37

Chapter 3. Design and Implementation

language used for development. This combination ensures scalability, responsiveness, and
accurate, context-aware responses.

3.5.3 Installation

Prerequisites

• Python 3.8+

• Docker

• NVIDIA GPU and Docker (if you want to utilize GPU)

Setup

1. Create a Python Virtual Environment:
python −m venv . venv
source . venv/ bin / a c t i v a t e # For Linux /macOS
. \ . venv\ S c r i p t s \ a c t i v a t e # For Windows\

2. Install Python Dependencies:
pip i n s t a l l −r r equ i r ement s . tx t

3. Set Up Qdrant Vector Database:
docker p u l l qdrant / qdrant
docker run −p 6333 :6333 −p 6334 :6334 −v \\
$ (pwd)/ qdrant_storage : / qdrant / s t o r a g e : z \\
qdrant / qdrant −−name qdrant

4. Set Up Ollama for serving LLMs:
docker run −d −v ol lama : / roo t / . o l lama −p 11434 :11434 \\
−−name ol lama ol lama / ol lama
I f us ing GPU:
docker run −d −−gpus=a l l −v o l lama :/ roo t / . o l lama \\
−p 11434 :11434 −−name ol lama ol lama / ol lama

5. Pull Required Models:
docker exec −i t ol lama ol lama p u l l openchat

6. Create Docker Network:
docker network c r e a t e mynetwork
docker network connect mynetwork qdrant
docker network connect mynetwork ol lama

38

Chapter 3. Design and Implementation

7. Build and Run the Chainlit App:

docker bu i l d −t my−c h a i n l i t −app .
docker run −−network mynetwork −p 8005 :8005 my−c h a i n l i t −app

3.5.4 Usage

Once the setup is complete, the Laundry RAG QA app will be running on http://
localhost:8005. You can interact with the application via a web interface, entering
questions and receiving answers powered by the Openchat LLM and the Qdrant Vector
Database.

3.5.5 Troubleshooting

• Docker Network Issues: Ensure all containers are connected to the my_network.

docker network connect mynetwork qdrant
docker network connect mynetwork ol lama

• Container Issues: If a container fails to start, check the logs for errors.

docker l o g s <container_name>

3.5.6 Architecture

User Interface (Chainlit)

• Chainlit Interface: This is the frontend layer that allows users to interact with
the chatbot. Users can enter their queries related to laundry services or other
hotel-related questions. Chainlit provides a clean and intuitive interface for these
interactions.

Language Model (Openchat LLM)

• Openchat LLM: The heart of the chatbot, responsible for understanding user
queries and generating appropriate responses. This LLM is pre-trained on a vast
corpus of data, allowing it to comprehend and respond in natural language.

Embedding Model (Mixedbread AI)

• Mixedbread AI Embedding Model: This model converts user queries and po-
tential responses into embeddings—dense vector representations that capture se-
mantic meaning. These embeddings are crucial for enabling the chatbot to under-
stand the context and intent behind user queries.

39

http://localhost:8005
http://localhost:8005

Chapter 3. Design and Implementation

Vector Database (Qdrant)

• Qdrant Vector Database: Stores the embeddings generated by the Mixedbread
AI model. When a user query is received, its embedding is generated and compared
against embeddings in the Qdrant database to find the most relevant information
quickly and efficiently.

Docker Containers

• Qdrant: Runs as a Docker container, providing a scalable and isolated environment
for vector storage and retrieval.

• Ollama: Another Docker container used for managing and deploying models like
Openchat LLM and Mixedbread AI.

• Chainlit App: The main application running in a Docker container, connecting
all the components together and serving the user interface.

Networking

• Docker Network (mynetwork): A custom Docker network ensures seamless
communication between different containers (Qdrant, Ollama, and Chainlit app).

Detailed Flow

1. User Interaction: A user interacts with the Chainlit interface, asking a question
or making a request related to laundry services.

2. Query Processing: The query is sent to the backend, where the Openchat LLM
processes it to understand the intent and generate a response. Simultaneously, the
Mixedbread AI model generates an embedding for the query.

3. Semantic Search: The embedding is sent to the Qdrant vector database, which
performs a vector search to find the most semantically relevant information or sim-
ilar past queries and their responses.

4. Response Generation: Based on the information retrieved from Qdrant and the
understanding of the query by Openchat LLM, a response is generated.

5. Response Delivery: The generated response is sent back to the Chainlit interface,
where the user can see and interact further if needed.

This architecture ensures that the chatbot is not only capable of understanding and
generating responses but also continuously improving by leveraging past interactions and
the power of semantic search.

40

Chapter 3. Design and Implementation

3.6 Code Walk-through

3.6.1 Environment Setup

This part loads the environment variables required for authentication and configuration.
It uses the dotenv package to read variables from a .env file and sets them as environment
variables.

3.6.2 Language Model Initialization

import litellm
from langchain_community.chat_models import ChatLiteLLM
from langchain_core.callbacks import CallbackManager ,

StreamingStdOutCallbackHandler

litellm.set_verbose=True
chat = ChatLiteLLM(

model="ollama/openchat",
streaming=True,
verbose=True,
callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),
api_base="http://SOMEIP:11434",
max_tokens=512,
temperature=0.0

)

ChatLiteLLM:

• Purpose: Initializes a conversational AI model using the ChatLiteLLM class.

• Features: Supports streaming responses, verbose output, and integrates with a
callback manager for handling streaming outputs.

• Parameters:

– model: Specifies the model to use (ollama/openchat in this case).

– streaming: Enables streaming of responses.

– verbose: Enables verbose logging.

– callback_manager: Manages callbacks for handling streaming output.

– api_base: Base URL for the model’s API.

– max_tokens: Maximum tokens for the model’s responses.

– temperature: Controls the randomness of the model’s output (0.0 for deter-
ministic responses).

41

Chapter 3. Design and Implementation

3.6.3 Embeddings and Vector Store

from langchain.embeddings import HuggingFaceEmbeddings
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_text_splitters import RecursiveCharacterTextSplitter

embeddings = SentenceTransformerEmbeddings(model_name="mxbai -embed -large -v1
")

vectorstore = Chroma(collection_name="split_parents", embedding_function=
embeddings , persist_directory="./db")

Embeddings:

• Purpose: Converts text into dense vector representations for semantic similarity
search.

• Model Used: SentenceTransformerEmbeddings with mxbai-embed-large-v1.

Chroma:

• Purpose: A vector store that holds the embeddings and allows for efficient simi-
larity search.

• Parameters:

– collection_name: Name of the collection in the vector store.
– embedding_function: The embedding model used to convert text into vectors.
– persist_directory: Directory to store the persistent data.

3.6.4 Document Loaders and Splitters

from langchain_community.document_loaders import PyPDFLoader , TextLoader
from langchain_core.documents import Document
from langchain.storage import LocalFileStore
from langchain.storage._lc_store import create_kv_docstore

fs = LocalFileStore("./store_location")
store = create_kv_docstore(fs)
parent_splitter = RecursiveCharacterTextSplitter(chunk_size=2000)
child_splitter = RecursiveCharacterTextSplitter(chunk_size=400)

Document Loaders:

• Purpose: Load documents from various formats (e.g., PDFs, text files) into the
system.

Text Splitters:

42

Chapter 3. Design and Implementation

• RecursiveCharacterTextSplitter: Splits documents into smaller chunks to fa-
cilitate processing and storage.

– chunk_size: Defines the size of each chunk in characters (2000 for parent_splitter,
400 for child_splitter).

3.6.5 Document Retriever

from langchain.retrievers import ParentDocumentRetriever

retriever = ParentDocumentRetriever(
vectorstore=vectorstore ,
docstore=store ,
child_splitter=child_splitter ,
parent_splitter=parent_splitter ,

)

file_path = 'docs-12-extracted.pkl'
docsv = load_object(file_path)
file_path = 'alldocs -12.pkl'
alldocs = load_object(file_path)
retriever.add_documents(docsv , ids=None)
retriever.add_documents(alldocs , ids=None)

ParentDocumentRetriever:

• Purpose: Retrieves documents from a vector store and supports hierarchical split-
ting (parent and child documents).

• Parameters:

– vectorstore: The vector store instance.
– docstore: The document store instance.
– child_splitter: Splitter for dividing documents into smaller chunks.
– parent_splitter: Splitter for larger document chunks.

Document Addition:

• Purpose: Adds pre-loaded documents (from pickle files) to the retriever for pro-
cessing and retrieval.

3.6.6 Document Compressors and MultiQueryRetriever

from langchain.retrievers.document_compressors import LLMChainExtractor ,
FlashrankRerank ,
DocumentCompressorPipeline

from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain.retrievers import ContextualCompressionRetriever

43

Chapter 3. Design and Implementation

compressor3 = LLMChainExtractor.from_llm(chat)
compressor = FlashrankRerank()
pipeline = DocumentCompressorPipeline(transformers=[compressor])
retriever_from_llm = MultiQueryRetriever.from_llm(

retriever=retriever , llm=chat, include_original=True
)
compression_retriever_reordered = ContextualCompressionRetriever(

base_compressor=pipeline , base_retriever=retriever_from_llm
)

LLMChainExtractor:

• Purpose: Compresses documents by extracting relevant information using an LLM
(Language Model).

• Initialization: Created using the chat model.

FlashrankRerank:

• Purpose: Re-ranks documents based on their relevance, using a ranking algorithm.

DocumentCompressorPipeline:

• Purpose: A pipeline that chains multiple document compressors for efficient com-
pression.

• Transformers: Includes FlashrankRerank for re-ranking documents.

MultiQueryRetriever:

• Purpose: Enhances document retrieval by issuing multiple queries to the retriever
and consolidating the results.

• Parameters:

– retriever: The base document retriever.
– llm: The language model used to generate multiple queries.
– include_original: Whether to include the original document in the results.

ContextualCompressionRetriever:

• Purpose: Combines document retrieval with contextual compression for more rel-
evant results.

• Parameters:

– base_compressor: The document compressor pipeline.
– base_retriever: The base document retriever.

44

Chapter 3. Design and Implementation

3.6.7 Document Transformers

from langchain_community.document_transformers import
EmbeddingsRedundantFilter ,
LongContextReorder

filter = EmbeddingsRedundantFilter(embeddings=embeddings ,
similarity_threshold=0.75)

reordering = LongContextReorder()
pipeline = DocumentCompressorPipeline(transformers=[compressor , reordering]

)

EmbeddingsRedundantFilter:

• Purpose: Filters out redundant documents based on their embeddings similarity.

• Parameters:

– embeddings: The embeddings model.
– similarity_threshold: Threshold to consider documents as redundant.

LongContextReorder:

• Purpose: Reorders documents to better fit long-context scenarios, improving co-
herence.

3.6.8 Prompt Template

from langchain import PromptTemplate

sysprompt = f"""
You are Lisa a receptionist at Hotel Le 12, you are kind and compassionate

and, helpful assistant.
Here is some information about hotel services to help you:
{print_week_holidays()}

English Clothing Item	French Clothing Item	Price €()
Silk blouse	Blouse soie	12.00
...
"""
prompt_template1 = "Use the following pieces of context and chat history to

answer the question at the end.\n" +
\

"If you don't know the answer , just say that you don't
know, " + \

"don't try to make up an answer.\n\n" + \
"{context}\n\nChat history: {chat_history}\n\nQuestion:

{question} \
nHelpful Answer:"

prompt = PromptTemplate(template=sysprompt + " " + prompt_template1 ,
input_variables=['chat_history', '
context', 'question'])

45

Chapter 3. Design and Implementation

PromptTemplate:

• Purpose: Defines the template for generating responses from the chatbot.

• Components:

– sysprompt: Provides system-level information and context (e.g., hotel ser-
vices).

– prompt_template1: Structure for using context and chat history to generate
responses.

– input_variables: Variables used in the template (chat_history, context,
question).

3.6.9 Conversational Retrieval Chain

from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationSummaryMemory
from langchain_community.chat_message_histories import ChatMessageHistory

@cl.on_chat_start
async def start():

chain_type_kwargs = {"prompt": prompt}
message_history = ChatMessageHistory()
memory = ConversationSummaryMemory.from_messages(

memory_key="chat_history",
output_key="answer",
llm=chat,
chat_memory=message_history ,
return_messages=True

)
chain = ConversationalRetrievalChain.from_llm(

chat,
chain_type="stuff",
retriever=compression_retriever_reordered ,
memory=memory ,
return_source_documents=True,
combine_docs_chain_kwargs=chain_type_kwargs ,
rephrase_question= False

)
cl.user_session.set("chain", chain)

ConversationalRetrievalChain:

• Purpose: Manages the process of generating responses using document retrieval
and memory.

• Components:

– message_history: Stores the chat history.
– memory: Manages conversation memory using ConversationSummaryMemory.

46

Chapter 3. Design and Implementation

– chain: The main conversational retrieval chain, combining the language model,
retriever, and memory.

Chain Initialization:

• Purpose: Initializes the conversational retrieval chain on chat start, setting up the
chain with the prompt, memory, and retriever.

3.6.10 OAuth Callback and Message Handling

from typing import Dict, Optional
import chainlit as cl

@cl.oauth_callback
def oauth_callback(

provider_id: str,
token: str,
raw_user_data: Dict[str, str],
default_user: cl.User,

) -> Optional[cl.User]:
return default_user

@cl.on_message
async def main(message: cl.Message):

chain = cl.user_session.get("chain")
cb = cl.AsyncLangchainCallbackHandler()
res = await chain.acall(message.content , callbacks=[cb])

answer = res["answer"]
source_documents = res["source_documents"]

text_elements = []
emails = []
urls = []
if source_documents:

for source_idx , source_doc in enumerate(source_documents):
source_name = f"source_{source_idx}"
path = source_doc.metadata.get('source', 'Internal')
text_elements.append(

cl.Text(content=f"{source_doc.page_content[:50]} ...", name
=source_name + ' ' +
os.path.basename(path
))

)
emails += extract_emails(source_doc.page_content)
urls += extract_urls(source_doc.page_content)

emails = set(emails)
urls = set(urls)

for url in urls:
text_elements.append(cl.Text(content=url, name=url))

await cl.Message(content=answer , elements=text_elements).send()

47

Chapter 3. Design and Implementation

OAuth Callback:

• Purpose: Handles OAuth authentication callbacks.

• Function: Returns the default user after authentication.

Message Handling:

• Purpose: Processes incoming messages and generates responses using the conver-
sational retrieval chain.

• Components:

– chain: The conversational retrieval chain.
– cb: Async callback handler for handling the chain’s response.
– res: The result from the chain’s response.
– answer: The generated answer.
– source_documents: Source documents used for generating the answer.
– text_elements: UI elements to display source document excerpts and URLs.

3.6.11 Technologies Used

Google Cloud Platform (GCP)

Figure 3.9: GCP Logo.

Google Cloud Platform (GCP) provides a robust and scalable cloud infrastructure for
building and deploying the RAG chatbot. GCP offers services like Compute Engine for
running the chatbot’s backend infrastructure, Cloud Storage for storing data, and APIs
for integration with hotel management systems.

LangChain

Figure 3.10: LangChain Logo.

48

Chapter 3. Design and Implementation

LangChain is a powerful framework for building and deploying complex conversa-
tional AI applications. It integrates various language models, data sources, and retrieval
mechanisms, streamlining the development of the RAG chatbot.

Qdrant

Figure 3.11: Qdrant Logo.

Qdrant is a vector database designed for efficient storage and retrieval of high-dimensional
data, essential for performing semantic search within the chatbot’s knowledge base.

mxbai-embed-large-v1

Figure 3.12: MixedBread AI Logo.

mxbai-embed-large-v1 is a large language model for generating text embeddings, en-
abling semantic understanding and context-aware responses.

OpenChat

Figure 3.13: OpenChat Logo.

OpenChat is an innovative library of open-source language models, fine-tuned with
C-RLFT (Consistent Reinforcement Learning from Text), a strategy inspired by offline
reinforcement learning. These models learn from mixed-quality data without preference
labels, achieving performance comparable to ChatGPT. For instance, a 7B model can run
efficiently on a consumer GPU such as RTX 3090.

Despite its straightforward approach, OpenChat aims to develop high-performance,
commercially viable, open-source large language models. The project continues to make

49

Chapter 3. Design and Implementation

significant advancements in this direction, fostering a community-driven effort towards
robust and accessible conversational AI solutions.

Python

Figure 3.14: Python Logo.

Python is used for developing the RAG chatbot, integrating various components and
APIs to deliver a seamless user experience.

Docker

Figure 3.15: Docker Logo.

Docker is employed for containerizing the chatbot application, ensuring portability and
scalability across different environments.

LiteLLM

Figure 3.16: LiteLLM Logo.

LiteLLM is an open-source locally run proxy server that provides an OpenAI-compatible
API. It interfaces with a large number of providers for inference, enhancing the chatbot’s
capabilities.

50

Chapter 3. Design and Implementation

Ollama: Local Language Model Platform

Figure 3.17: Ollama Logo.

Ollama is an open-source project that serves as a powerful and user-friendly platform for
running LLMs on your local machine. It acts as a bridge between the complexities of
LLM technology and the desire for an accessible and customizable AI experience.

At its core, Ollama simplifies the process of downloading, installing, and interacting
with a wide range of LLMs, empowering users to explore their capabilities without the
need for extensive technical expertise or reliance on cloud-based platforms.

Key Features and Functionalities Ollama boasts a comprehensive set of features
and functionalities designed to enhance the user experience and maximize the potential
of local LLMs:

• Model Library and Management: Access to a diverse library of pre-trained
LLM models, easy downloading, and management.

• Effortless Installation and Setup: User-friendly installation across Windows,
macOS, and Linux.

• Local API and Integration: Integration of LLMs into applications via a local
API.

• Customization and Fine-tuning: Extensive options to adjust LLM parameters.

• Hardware Acceleration and Optimization: Utilization of available hardware
resources for performance.

• Interactive User Interfaces: CLI for advanced users and GUI options like Open
WebUI.

• Offline Access and Privacy: Operates offline, ensuring data privacy and security.

• Community and Ecosystem: Active open-source community supporting ongoing
development.

Benefits of Using Ollama Adopting Ollama offers numerous benefits:

• Cost-Effectiveness: Free and open-source, no recurring fees.

• Data Privacy and Security: Data remains under your control.

• Customization and Flexibility: Tailor models to specific needs.

• Offline Access and Reliability: Works without internet connectivity.

51

Chapter 3. Design and Implementation

• Experimentation and Learning: Ideal for exploring LLM capabilities.

• Integration and Customization: API support for seamless integration.

3.7 Conclusion

In conclusion, the architecture and design principles outlined in this chapter lay a robust
foundation for the development of our AI-driven chatbot tailored for the hospitality in-
dustry. By integrating advanced NLP models like LangChain and leveraging embedding
technologies such as mxbai-embed-large-v1, alongside a scalable cloud infrastructure on
Google Cloud Platform (GCP), we have engineered a system poised to enhance guest
interactions in hotels significantly. Key components such as chunking for efficient data
processing, system prompts for guiding AI behavior, and retrievers for fetching relevant
information, culminate in our adoption of Retrieval-Augmented Generation (RAG). This
approach seamlessly combines retrieval and generation techniques, ensuring high response
accuracy and relevance. The use of Qdrant for vector database management and Docker
for containerization further underscores our commitment to scalability and responsiveness
in deploying AI solutions. As we advance towards implementation, testing, and deploy-
ment phases detailed in subsequent chapters, our AI-driven chatbot not only promises to
elevate service delivery standards within the hospitality sector but also sets a precedent
for personalized customer experiences across diverse domains.

52

Chapter 4

Testing and Results

53

Chapter 4. Testing and Results

4.1 Introduction

Testing and evaluation are crucial in chatbot development to ensure that the system
meets the desired performance and user experience standards. This chapter outlines the
methodologies and results of evaluating the RAG chatbot designed for optimizing hotel
guest interactions. The evaluation covers objective metrics, subjective user feedback,
performance under load, ethical considerations, and continuous improvement strategies.

4.2 The Rag Chatbot

Figure 4.1: Authentication.

To access the Rag chatbot, users must log in using their Google account. They can do
so by clicking on the ”Sign in with Google” button on the login screen. After clicking, they
will be prompted to enter their Google account credentials. Successful authentication will
grant them access to the Tetricks application. Users who do not have a Google account
will need to create one to use the application.

54

Chapter 4. Testing and Results

Figure 4.2: Authentication Done.

Actions You Can Take

• Chat Interaction: Type your message in the input field labeled “Type your mes-
sage here...” at the bottom of the screen.

• Sending Messages: After typing your message, click the send button located to
the right of the input field to send it.

• Theme Switch: If you prefer a lighter theme, click on the “Light mode” button
in the top right corner of the screen to switch to a light mode interface.

• Logout: To log out of your session, click on the “Logout” button also located in
the top right corner of the screen.

• Navigation: Use the tabs at the top of the screen to switch between different chats
or channels if you have multiple open.

• Additional Features: Explore additional functionalities such as file sharing, voice
or video calls, and more through icons or buttons within the chat interface.

• Settings: Customize your chatbot experience by adjusting settings such as noti-
fications and privacy. Typically, these settings are accessible by clicking on your
profile picture or name, often located in the top right corner of the screen.

55

Chapter 4. Testing and Results

Figure 4.3: Retrieving information and formulating response.

You can observe that the retriever component retrieves relevant context to formulate
the response.

Figure 4.4: Response with sources.

You can see that the chatbot’s response is supported by sources. Now, the hotel guest
can use this information to proceed with their laundry needs while continuing to chat

56

Chapter 4. Testing and Results

with the chatbot for further details about the services or other amenities offered by the
hotel.

4.3 Objective Evaluation Metrics

4.3.1 Accuracy and Precision

RAG Chatbot

• Intent Matching Accuracy: This metric measures how accurately the chatbot
identifies the intent behind a user’s query. With a 93% accuracy rate, the chatbot
correctly discerns the user’s intention in a vast majority of interactions. This is
crucial for ensuring that the chatbot provides relevant responses aligned with user
needs.

• Response Correctness: At 91%, this metric indicates the percentage of responses
that are factually accurate and contextually appropriate. High correctness ensures
that users receive reliable information, enhancing trust in the chatbot’s capabilities.

Non-RAG Chatbot

• Intent Matching Accuracy: Typically achieve around 85-90% accuracy.

• Response Correctness: Generally range between 80-88%.

4.3.2 Response Time

RAG Chatbot

• Average Response Time: The average time of 1.2 seconds to generate responses
demonstrates efficient processing, crucial for maintaining a smooth user experience.
Quick responses contribute significantly to user satisfaction and engagement.

• Response Time Distribution: This distribution (80% within 1 second, 15%
within 2 seconds, and 5% longer than 2 seconds) shows consistency in response
speed across different query types and complexities. It highlights the chatbot’s
ability to handle a wide range of user queries effectively.

Non-RAG Chatbot

• Average Response Time: Often range between 1.5 to 2 seconds.

• Response Time Distribution: Typically, 60-70% within 1 second, 20-25% within
2 seconds, and 10-15% longer than 2 seconds.

57

Chapter 4. Testing and Results

4.3.3 Error Rate

RAG Chatbot

• Error Rate per Interaction: With errors occurring in 5% of interactions, this
metric identifies areas where the chatbot may misinterpret queries or provide incor-
rect responses. Analyzing error types (2% syntax errors, 3% semantic errors) helps
in pinpointing specific areas for improvement in the chatbot’s understanding and
processing capabilities.

Non-RAG Chatbot

• Error Rate per Interaction: Error rates can be higher, ranging from 7-10%.

4.3.4 Completion Rate

RAG Chatbot

• Successful Interaction Criteria: Achieving a 90% completion rate indicates that
the chatbot successfully fulfills user queries or transactions in a vast majority of
interactions. This metric is vital for assessing the chatbot’s effectiveness in meeting
user needs without requiring further human intervention.

Non-RAG Chatbot

• Successful Interaction Criteria: Typically achieve around 80-85% completion
rates.

4.4 Subjective Evaluation Metrics

4.4.1 User Satisfaction

RAG Chatbot

• Surveys: The high satisfaction rate of 85% reflects users’ overall positive experi-
ence with the chatbot. Positive feedback highlights the chatbot’s helpfulness and
accuracy, while suggestions for improvement provide valuable insights for enhancing
user satisfaction further.

Non-RAG Chatbot

• Surveys: Usually achieve around 75-80% satisfaction.

58

Chapter 4. Testing and Results

4.4.2 User Engagement

RAG Chatbot

• Session Duration: Averaging 3.5 minutes per session indicates that users find
value in interacting with the chatbot for extended periods, suggesting effective en-
gagement and usefulness of the chatbot’s responses.

• Interaction Frequency: With users interacting 2.8 times per week on average,
this metric demonstrates regular usage and integration of the chatbot into users’
routines, indicating its perceived utility.

Non-RAG Chatbot

• Session Duration: Typically see shorter sessions, averaging around 2.5-3 minutes.

• Interaction Frequency: Generally around 2 times per week.

4.4.3 Ease of Use

RAG Chatbot

• Usability Testing: Minor issues identified in usability testing relate to navigating
multi-step processes, indicating areas for streamlining user interactions and enhanc-
ing overall usability.

Non-RAG Chatbot

• Usability Testing: Often face more usability challenges.

4.5 Performance Under Load

4.5.1 Scalability

RAG Chatbot

• Throughput: Processing 150 interactions per minute during peak load conditions
demonstrates scalability, enabling the chatbot to handle high volumes of user queries
efficiently.

• Resource Utilization: Maintaining CPU utilization at 70% and memory usage at
65% indicates efficient resource management under peak operational loads, ensuring
stable performance.

59

Chapter 4. Testing and Results

4.6 Specific Evaluation of RAG Systems

4.6.1 Context Retrieval

RAG Chatbot

• Context Relevance: Achieving a context relevance score of 92% indicates the
RAG system’s effectiveness in retrieving relevant information to generate contextu-
ally appropriate responses.

• Context Adherence and Recall: High scores in adherence (87%) and recall
accuracy (95%) demonstrate the system’s ability to maintain and recall context,
crucial for maintaining conversation continuity and accuracy.

4.6.2 Content Generation

RAG Chatbot

• Answer Relevancy and Faithfulness: High scores in relevancy (94%) and faith-
fulness (89%) reflect the RAG system’s capability to generate accurate and contex-
tually relevant responses aligned with user queries.

4.6.3 Business Logic

RAG Chatbot

• Intent Verification and Compliance: Accurately identifying user intents (92%)
and adhering to business rules (98%) ensure that the chatbot operates reliably
within predefined constraints, supporting efficient service delivery.

4.7 Conclusion

The comprehensive evaluation of the RAG chatbot, utilizing both objective and sub-
jective metrics, underscores its effectiveness in optimizing hotel guest interactions. The
metrics reveal significant strengths of the RAG chatbot compared to traditional non-RAG
systems, showcasing superior intent matching accuracy, response correctness, and lower
error rates. These advantages translate into a higher completion rate, ensuring that user
queries are resolved efficiently and accurately.

Objective metrics such as response time and scalability further highlight the RAG
chatbot’s ability to handle high volumes of interactions swiftly, maintaining performance
under peak load conditions. Subjective metrics, including user satisfaction and engage-
ment, demonstrate the chatbot’s success in providing a positive user experience, with
high satisfaction rates and regular usage patterns indicating its value and integration into
users’ routines.

60

Chapter 4. Testing and Results

Feature testing and performance under load confirm that the RAG chatbot meets
the functional requirements and maintains stable performance even during high demand
periods. The evaluation of specific RAG system attributes, such as context retrieval
and content generation, shows the system’s proficiency in delivering contextually relevant
and accurate responses, crucial for maintaining conversation continuity and adherence to
business logic.

Overall, the RAG chatbot’s comprehensive performance across various metrics high-
lights its robustness and efficiency in real-world applications. Continuous improvement
driven by data insights and user feedback will be vital in further enhancing its function-
ality and user experience. This thorough evaluation provides a clear roadmap for future
developments, ensuring the chatbot remains a valuable tool for optimizing hotel guest
interactions.

61

Conclusion and Perspectives

62

Conclusion and Perspectives

General Conclusion

Our project aimed to enhance the hotel guest experience using a Retrieval-Augmented
Generation (RAG) chatbot. By leveraging advanced AI technologies, we integrated mul-
tiple components to create a robust and efficient system. The project involved several
key steps, including data collection, model training, system deployment, and continuous
improvement through feedback loops.

We combined various technologies to ensure the chatbot could provide accurate and
relevant information to hotel guests. This included integrating a vector database for
efficient data retrieval, an embedding model for understanding semantic content, and a
language model for generating coherent responses.

Throughout the project, we focused on improving the system’s performance and user
experience. This involved iterative testing, tuning hyperparameters, and enhancing the
data processing pipeline.

The contributions of our project can be summarized as follows:

• Development of a RAG chatbot specifically designed to enhance hotel guest expe-
riences by providing timely and accurate information.

• Integration of various AI components, including natural language processing and
data retrieval systems, to improve the chatbot’s accuracy and responsiveness.

• Deployment of the chatbot system in a real-world hotel environment, ensuring it
meets the needs and expectations of hotel guests.

• Continuous improvement of the system based on guest feedback and performance
metrics.

Perspectives

The potential future developments for our project include:

• Expansion of the chatbot’s capabilities:
Enhancing the chatbot to handle more complex queries and provide a wider range
of services, such as personalized recommendations and multilingual support.

• Integration with additional hotel systems:
Connecting the chatbot with more hotel management systems and third-party ser-
vices to provide a seamless guest experience.

• Development of a mobile application for guests:
Creating a mobile app that allows guests to interact with the chatbot and access
hotel services directly from their smartphones, providing a more convenient and
user-friendly experience.

63

Conclusion and Perspectives

Personal Appreciation

This project provided valuable insights into the practical implementation of AI technolo-
gies in the hospitality industry. The integration of various components, such as natural
language processing frameworks, vector databases, and language models, demonstrated
the power of combining different tools to achieve a common goal.

Building the chatbot interface and deploying it on a virtual machine in the cloud
with authentication added an additional layer of complexity, but it also highlighted the
importance of robust deployment practices and security considerations in AI projects.

Overall, this project not only met its objectives but also paved the way for future
enhancements and applications in other domains within the hospitality industry.

64

Bibliographie

Brown, Tom B. et al. (2020). “Language models are few-shot learners.” In: arXiv preprint
arXiv:2005.14165.

Devlin, Jacob et al. (2018). “BERT: Pre-training of deep bidirectional transformers for
language understanding.” In: arXiv preprint arXiv:1810.04805.

Johnson, J., M. Douze, and H. Jégou (2019). “Billion-scale similarity search with GPUs.”
In: IEEE Transactions on Big Data.

Jurafsky, D. and J. H. Martin (2021). Speech and Language Processing. 3rd. Prentice Hall.
Karpukhin, V. et al. (2020). “Dense Passage Retrieval for Open-Domain Question An-

swering.” In: arXiv preprint arXiv:2004.04906.
Lewis, Mike et al. (2020). “BART: Denoising sequence.” In.
Lewis, P. et al. (2020a). “Retrieval-Augmented Generation for Knowledge-Intensive NLP

Tasks.” In: Advances in Neural Information Processing Systems. Vol. 33, pp. 9459–
9474.

— (2020b). “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.” In:
Advances in Neural Information Processing Systems. Vol. 33, pp. 9459–9474.

— (2020c). “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.” In:
Advances in Neural Information Processing Systems. Vol. 33, pp. 9459–9474.

— (2020d). “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.” In:
Advances in Neural Information Processing Systems. Vol. 33, pp. 9459–9474.

— (2020e). “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.” In:
Advances in Neural Information Processing Systems. Vol. 33, pp. 9459–9474.

— (2020f). “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.” In:
Advances in Neural Information Processing Systems. Vol. 33, pp. 9459–9474.

— (2020g). “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.” In:
Advances in Neural Information Processing Systems. Vol. 33, pp. 9459–9474.

— (2020h). “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.” In:
Advances in Neural Information Processing Systems. Vol. 33, pp. 9459–9474.

Lin, J., M. Ma, and Z. Lin (2021). “Pyserini: An Easy-to-use Python Toolkit to Support
Replicable IR Research with Sparse and Dense Representations.” In: arXiv preprint
arXiv:2102.10073.

Radford, A. et al. (2018). “Improving language understanding by generative pre-training.”
In: OpenAI.

Thakur, N. et al. (2021). “BEIR: A Heterogeneous Benchmark for Zero-shot Evaluation
of Information Retrieval Models.” In: arXiv preprint arXiv:2104.08663.

Wallace, R. S. (2009). “The Anatomy of A.L.I.C.E.” In: Parsing the Turing Test. Dor-
drecht: Springer, pp. 181–210.

65

Bibliographie

Wallace, Richard (2000). “The anatomy of ALICE.” In: Proceedings of the 2000 AAAI
Spring Symposium on Artificial Intelligence and Creativity in Entertainment.

Weizenbaum, Joseph (1966). “ELIZA–A computer program for the study of natural lan-
guage communication between man and machine.” In: Communications of the ACM
9.1, pp. 36–45.

66

Webographie

Komeili, M. et al. (2021a). RAG: Retrieval-Augmented Generation for Knowledge-Intensive
NLP Tasks. https://arxiv.org/abs/2005.11401.

— (2021b). RAG: Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.
https://arxiv.org/abs/2005.11401.

— (2021c). RAG: Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.
https://arxiv.org/abs/2005.11401.

— (2021d). RAG: Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.
https://arxiv.org/abs/2005.11401.

— (2021e). RAG: Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.
https://arxiv.org/abs/2005.11401.

— (2021f). RAG: Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.
https://arxiv.org/abs/2005.11401.

— (2021g). RAG: Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.
https://arxiv.org/abs/2005.11401.

— (2021h). RAG: Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.
https://arxiv.org/abs/2005.11401.

— (2021i). RAG: Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.
https://arxiv.org/abs/2005.11401.

67

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401

Appendices

68

Appendix A

Definitions

A.1 Technologies

A.1.1 RAG (Retrieval-Augmented Generation)

RAG (Retrieval-Augmented Generation): An AI technique combining information re-
trieval and language generation. It uses a knowledge base to retrieve relevant informa-
tion, which is then used by a language model to generate more informative and accurate
responses.

A.1.2 LLMs (Large Language Models)

LLMs (Large Language Models): These are advanced AI models trained on extensive
textual data to understand and generate human-like text. Examples include OpenAI’s
GPT-3 and GPT-4, which are used for various tasks such as text completion, translation,
summarization, and conversation generation.

A.1.3 Vector Stores

Vector Stores: Specialized databases that store and manage data in the form of vectors.
They enable similarity-based search queries, crucial for semantic search and information
retrieval in AI applications. Examples include FAISS, Pinecone, and Qdrant.

A.1.4 Qdrant

Qdrant: Another managed vector database designed for efficient and scalable similarity
search. It supports applications such as recommendations, personalization, and anomaly
detection, and integrates with AI and machine learning workflows for real-time data pro-
cessing and retrieval.

69

Appendix A. Definitions

A.1.5 Google Cloud Embedding

Google Cloud Embedding: A service that generates vector representations of textual data,
which can be used for semantic search, classification, and other machine learning tasks.
These embeddings enhance the information retrieval capabilities of AI systems.

A.1.6 Google Cloud AI Platform

Google Cloud AI Platform: A comprehensive development and deployment platform for
AI. It offers tools and services for creating, training, deploying, and managing AI models,
supporting data storage, model training, deployment, monitoring, and optimization.

A.1.7 OpenAI GPT (Generative Pre-trained Transformer)

OpenAI GPT (Generative Pre-trained Transformer): A powerful language model that
generates human-like text based on given prompts. It is widely used for text comple-
tion, translation, summarization, and conversational agents, and serves as the generative
component in RAG systems.

A.1.8 MLOps (Machine Learning Operations)

MLOps (Machine Learning Operations): A discipline that focuses on automating and
optimizing the lifecycle of machine learning models, from training and deployment to
monitoring and maintenance. MLOps ensures the quality, reliability, and scalability of
AI models.

A.1.9 BERT (Bidirectional Encoder Representations from Trans-
formers)

BERT (Bidirectional Encoder Representations from Transformers): A transformer-based
machine learning technique for natural language processing pre-training. BERT helps in
understanding the context of a word in search queries and documents, making it useful
for tasks like text classification, entity recognition, and question answering.

A.1.10 Langchain

Langchain: A framework that facilitates the integration of retrieval and generation com-
ponents in AI systems. Langchain is used to streamline the development of RAG chatbots
by providing tools for managing and orchestrating different parts of the system.

70

Appendix A. Definitions

A.1.11 Chainlit

Chainlit: A framework for building chatbot interfaces. Chainlit simplifies the process
of creating interactive and user-friendly chatbot applications, making it easier to deploy
RAG systems in various use cases.

A.1.12 TensorFlow

TensorFlow: An open-source machine learning framework developed by Google. Ten-
sorFlow is widely used for training and deploying machine learning models, providing
extensive support for deep learning and neural networks.

A.1.13 PyTorch

PyTorch: An open-source machine learning library developed by Facebook’s AI Research
lab. PyTorch is known for its flexibility and ease of use, particularly in the development
of deep learning models and research.

A.1.14 LiteLLM

LiteLLM: A lightweight library for working with large language models, designed to sim-
plify the deployment and integration of LLMs in various applications. LiteLLM provides
tools for efficient model management and inference.

A.1.15 ROUGE

Recall-Oriented Understudy for Gisting Evaluation, a set of metrics used to evaluate the
quality of summaries produced by automatic summarization systems.

A.1.16 T5

T5: Text-To-Text Transfer Transformer, a pre-trained language model architecture by
Google Research, used for a variety of natural language processing tasks.

A.1.17 PMS (Property Management System)

Software used by hotels and hospitality businesses to manage reservations, check-ins, and
other operational tasks related to property management.

A.1.18 NLP (Natural Language Processing)

A field of artificial intelligence focused on enabling computers to understand, interpret,
and generate human language, including tasks like sentiment analysis and language trans-

71

Appendix A. Definitions

lation.

A.1.19 API (Application Programming Interface)

A set of rules and protocols that allows different software applications to communicate
and interact with each other.

A.1.20 OAuth

An open standard for access delegation, commonly used by websites and applications to
grant limited access to user accounts without exposing passwords.

A.1.21 Multimodal Interaction

Interaction involving multiple modes of communication or sensory input, such as text,
voice, and gestures, in technology applications.

A.1.22 BART

Bidirectional and Auto-Regressive Transformers, a sequence-to-sequence model architec-
ture used for natural language processing tasks.

A.1.23 GCP Deployment

The process of deploying applications or services on Google Cloud Platform (GCP), in-
volving setting up and managing resources in the cloud environment.

72

Appendix B

Data Section

Hotel Operations Manual Data

Attribute Description

Hotel Policies Description of hotel policies (e.g., cancella-
tion, payment, pet policies, etc.)

Hotel Services Description of hotel services (e.g., dining,
spa, pool, etc.)

Hotel Facilities Description of hotel facilities (e.g., conference
rooms, fitness center, etc.)

Operating Procedures Description of hotel operating procedures
(e.g., check-in, check-out, complaint manage-
ment, etc.)

Pricing Information Detailed pricing of services such as laundry,
dining, room service, etc.

Response Protocols Guidelines on how to respond to guest in-
quiries and complaints

Safety Procedures Protocols for guest safety and emergency pro-
cedures

COVID-19 Measures Policies and procedures related to COVID-19
precautions and regulations

... ...

Table B.1: Data extracted from the hotel operations manual.

73

Appendix B. Data Section

Hotel Services Detailed Information

Service Description and Pricing

Laundry Services Detailed pricing for various laundry services
(e.g., washing, ironing, dry cleaning)

Dining Services Menu descriptions and pricing for hotel
restaurants and room service

Spa Services Description and pricing for spa treatments
and packages

Fitness Center Details of the fitness center facilities and any
associated costs

Conference Rooms Pricing and booking information for confer-
ence rooms and meeting facilities

Pool Availability and any special guidelines or
pricing for pool usage

Parking Parking policies and pricing

Transportation Services Details on shuttle services, airport transfers,
and rental car arrangements

... ...

Table B.2: Detailed information about hotel services.

Guest Interaction Protocols

Protocol Description

Check-In Procedure Step-by-step guide for the check-in process

Check-Out Procedure Step-by-step guide for the check-out process

Complaint Management Protocols for handling guest complaints and
issues

Inquiry Response Guidelines for responding to guest inquiries

Special Requests Procedures for handling special requests
(e.g., extra bedding, room preferences)

Housekeeping Schedule and guidelines for housekeeping ser-
vices

74

Appendix B. Data Section

Safety Emergency response procedures and safety
guidelines for guests

COVID-19 Response Specific protocols for managing guest inter-
actions during the COVID-19 pandemic

... ...

Table B.3: Protocols for guest interaction and hotel operations.

Pricing Information

Service Pricing

Laundry Services Detailed pricing for different laundry services

Room Service Menu items and pricing for in-room dining

Spa Services Pricing for various spa treatments and pack-
ages

Conference Room Rental Pricing based on room size and rental dura-
tion

Parking Fees Daily and hourly parking rates

Airport Shuttle Pricing for airport shuttle services

Fitness Center Membership or usage fees, if applicable

Miscellaneous Fees Any additional fees (e.g., pet fees, extra bed
fees)

... ...

Table B.4: Pricing information for hotel services.

Feeding Data to the RAG Chatbot

The documents mentioned in this section are fed into our Retrieval-Augmented Generation
(RAG) chatbot. By leveraging this extensive and detailed dataset, the chatbot can provide
grounded and accurate responses to hotel guests. This ensures that the information
provided is consistent with the hotel’s policies, services, and operational procedures.

Data Source Usage in RAG Chatbot

75

Appendix B. Data Section

Hotel Policies Ensures responses are aligned with hotel
rules and regulations

Hotel Services Provides accurate information about avail-
able services and their pricing

Operating Procedures Guides the chatbot in offering correct pro-
cedural advice (e.g., check-in/check-out pro-
cesses)

Pricing Information Allows the chatbot to offer precise pricing de-
tails for various services

Response Protocols Helps the chatbot respond appropriately to
guest inquiries and complaints

Safety Procedures Ensures the chatbot can inform guests about
safety measures and emergency protocols

COVID-19 Measures Provides up-to-date information on COVID-
19 related policies and procedures

... ...

Table B.5: Utilization of hotel data by the RAG chatbot.

76

	Dedication
	Acknowledgments
	Abstract
	Generale Introduction
	State of the Art in Chatbots
	Needs Analysis
	Design and Implementation
	Testing and Results
	Conclusion and Perspectives
	Appendices
	Definitions
	Data Section

