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This study implements and evaluates an innovative approach
to enhance 4D Flow Magnetic Resonance Imaging (MRI) using
Physics-Informed Neural Networks (PINNs). By integrating
Navier-Stokes equations as physical constraints within a deep
learning model, we develop a framework that leverages
Gaussian Quadrature for efficient MRI signal simulation and
utilizes complex image representation to encode both signal
strength and velocity information.
Our approach is validated through a series of experiments,
including Poiseuille flow in various pipe geometries and
simulated aortic flow. Results demonstrate robust
performance in predicting flow patterns, even in noisy
environments, and show promising generalization capabilities
to unseen regions.
Key findings include the successful implementation of the
PINN framework for fluid dynamics problems, demonstrating
effective noise handling and super-resolution capabilities.
The research also highlights the potential for applying this
approach to complex, physiologically relevant flow scenarios,
paving the way for improved cardiovascular imaging and
diagnostics.
This research contributes to the growing field of physics-
guided deep learning in medical imaging, offering a pathway
towards more accurate cardiovascular diagnostics and
potentially reduced MRI acquisition times. While
computational complexity and parameter tuning present
challenges, the results suggest significant potential for
enhancing 4D Flow MRI resolution and quality.
Future work will focus on advanced PINN architectures, multi-
physics integration, and clinical validation studies.
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Abstract

This study implements and evaluates a novel approach for super-resolution and
denoising of 4D Flow Magnetic Resonance Imaging (MRI) using Physics-Informed
Neural Networks (PINNs). Building upon the work of Fathi et al. [6], we develop
a framework that integrates the Navier-Stokes equations as physical constraints
within a deep learning model. Our method employs Gaussian Quadrature for ef-
ficient MRI signal simulation and utilizes complex image representation to encode
both signal strength and velocity information.

We validate our approach through a series of experiments, including Poiseuille
flow in various pipe geometries and simulated aortic flow derived from Computa-
tional Fluid Dynamics (CFD) data. The PINN demonstrates robust performance in
predicting flow patterns, particularly in noisey environments, and shows promis-
ing generalization capabilities to unseen regions in half-pipe scenarios.

Key findings include the successful implementation of the PINN framework
for fluid dynamics problems, effective noise handling, and the potential for appli-
cation to more complex, physiologically relevant flow scenarios. While compu-
tational complexity and parameter tuning present challenges, the results suggest
significant potential for enhancing 4D Flow MRI resolution and quality.

This research contributes to the growing field of physics-guided deep learning
in medical imaging, offering a pathway towards more accurate cardiovascular
diagnostics and potentially reduced MRI acquisition times. Future work will
focus on advanced PINN architectures, multi-physics integration, and clinical
validation studies.
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Chapter 1

Introduction

1.1 Host Institution LS2N

The Laboratoire des Sciences du Numérique de Nantes (LS2N - UMR 6004), which
hosts my internship, is a leading French research institute in digital sciences.
Founded in 2017, LS2N excels in robotics, artificial intelligence, and data science.
The lab’s mission is to advance scientific knowledge and develop practical solu-
tions for societal and industrial challenges. LS2N’s commitment to excellence and
interdisciplinary collaboration has quickly established it as a key player in the
global scientific community, driving innovation in digital technologies.

Figure 1.1: LS2N logo
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1.2 Research Team and Environment

LS2N is organized into specialized research teams, each concentrating on specific
areas of digital sciences. I conducted my internship with the Image Perception
Interaction (IPI) team, which focuses on advancing computer vision, image pro-
cessing, and human-computer interaction. IPI’s research is aimed at developing
cutting-edge algorithms and systems for interpreting and interacting with visual
data. This work paves the way for innovative applications in fields such as aug-
mented reality and medical imaging, pushing the boundaries of how we perceive
and interact with visual information in both virtual and real-world environments.

Figure 1.2: IPI logo

1.3 Project Overview

This internship project focuses on the application of Physics-Informed Neural
Networks (PINNs) for super-resolution and denoising of 4D Flow MRI data. 4D
Flow MRI is a powerful technique for assessing cardiovascular function, but it often
suffers from limited spatial resolution and noise. Our research aims to leverage the
power of PINNs to enhance the quality and resolution of these images, potentially
improving diagnostic capabilities in clinical settings. This work is conducted
under the supervision of M. Sébastien LEVILLY and M. Simon PERRIN, whose
expertise and guidance are instrumental in navigating the complex intersection of
deep learning, fluid dynamics, and medical imaging.
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Chapter 2

4D Flow MRI

2.1 4D Flow MRI Importance

Magnetic Resonance Imaging (MRI) has revolutionized medical diagnostics by
providing detailed, non-invasive visualization of internal body structures. Within
this field, 4D Flow MRI has emerged as a powerful technique for assessing blood
flow dynamics in three-dimensional space over time. This advanced imaging
modality offers unmatched insights into cardiovascular function, allowing clini-
cians to evaluate complex flow patterns, quantify blood velocity, and assess hemo-
dynamic(fuild mechanics of blood) parameters. By analyzing the velocity field,
physicians can detect abnormal flow characteristics associated with conditions
such as valvular diseases, aortic aneurysms, and congenital heart defects. For
instance, increased flow velocities or turbulent flow patterns can indicate the pres-
ence of stenosis or regurgitation in heart valves. The velocity data also enables
the computation of critical hemodynamic parameters, including wall shear stress,
pressure gradients, and vorticity, which are essential for understanding the biome-
chanics of blood flow and its impact on vessel walls. These parameters can help in
assessing the risk of atherosclerosis, aneurysm formation, or thrombus develop-
ment. Furthermore, the ability to calculate metrics like flow rate, kinetic energy,
and flow displacement allows for a comprehensive evaluation of cardiac function
and efficiency. This wealth of information derived from the velocity field not
only aids in more accurate diagnoses but also assists in treatment planning and
monitoring disease progression. The importance of 4D Flow MRI in the medical
environment cannot be overstated, as it enables more accurate diagnosis of car-
diovascular diseases, aids in surgical planning, and facilitates the monitoring of
treatment efficacy for conditions such as congenital heart defects, aneurysms, and
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valvular disorders. Appeal to Appendix B for detailed information about MRI.

Figure 2.1: Magnetic Resonance Imaging (MRI) of the human torso

Image 2.1 displays the aorta, the body’s main artery, which is clearly visible
as a bright curvy tube. This MRI scan provides an excellent view of the aorta’s
path, showcasing its characteristic arch as it emerges from the heart and then
descends through the chest cavity. This view allows medical professionals to
assess the aorta’s size, shape, and path, which is crucial for diagnosing conditions
such as aortic aneurysms. Such detailed visualization of the aorta is essential for
planning surgical interventions, evaluating the progression of aortic diseases, and
monitoring treatment outcomes in patients with cardiovascular conditions.
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Figure 2.2: 4D Flow MRI of the human heart

Image 2.2 showcase a 4D flow MRI image of blood flow in a 3.5-year-old patient
with bicuspid aortic valve (BAV) (congenital heart condition where the aortic valve
has only two leaflets (or cusps) instead of the normal three) and aortic coarctation
(congenital heart defect involving a narrowing of the aorta). The image, presented
in anterior (A) and posterior (B) views, the ascending aorta (AAo) and descending
aorta (DAo) are clearly labeled, it uses color-coded 3D streamlines to illustrate
blood flow patterns.

2.2 4D Flow MRI Limitations

Despite its potential, 4D Flow MRI faces several significant limitations that can
impact its clinical utility:

1. Velocity aliasing: This occurs when the blood flow velocity exceeds the
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preset velocity encoding (VENC) value, resulting in phase wrapping and
inaccurate velocity measurements. This can lead to misinterpretation of
flow patterns and erroneous quantification of hemodynamic parameters.

2. Low spatial and temporal resolution: The need to balance scan time, spatial
coverage, and temporal resolution often results in compromised image qual-
ity. This limitation can obscure fine flow details and hinder the detection of
subtle abnormalities, particularly in smaller vessels or regions with complex
flow patterns.

3. Acquisition noise: Various sources of noise, including thermal noise, and
physiological motion, can degrade image quality and introduce errors in
velocity measurements. This noise can mask important flow features and
reduce the overall reliability of the data.

4. Long acquisition times: 4D Flow MRI scans typically require extended
scanning periods, which can be challenging for patients and increase the
likelihood of motion artifacts. This limitation also reduces the technique’s
practicality in clinical settings.

5. Complex post-processing: The vast amount of data generated by 4D Flow
MRI necessitates sophisticated post-processing techniques, which can be
time-consuming and require specialized expertise.

In summary, 4D flow MRI is a powerful tool for viewing blood flow in 3D
over time, offering new insights into heart and blood vessel problems. It greatly
improve how doctors diagnose and treat these issues. However, it has some big
drawbacks. Scans take a long time, which is hard on patients. The images aren’t
always clear enough to see important details. Processing the data is complicated
and time-consuming. These problems make hinder the use of 4D flow MRI in
everyday patient care, even though it’s very promising. Solving these issues is
key to making the most of this advanced imaging method, in the next chapter we
will discuss different approach to solve these limitations.

2.3 Problem and Approach

4D Flow MRI is an indispensable tool in modern medical diagnostics, Despite
its potential, challenges such as low spatio-temporal resolution, acquisition noise,
velocity aliasing, and phase-offset artifacts have hindered its clinical accessibility.
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Fathi et al. [6] tries to solve these problems by introducing a new approach
that is based on PINNs, velocity field, pressure, and MRI signal are modeled
as a patient-specific neural network. For training, 4D-Flow MRI images in the
complex Cartesian space are used to impose data-fidelity. Physical constraints
were imposed through regularization. Creative loss function terms have been
introduced to handle noise and super-resolution. The trained patient-specific
DNN can be sampled to generate noise-free high-resolution flow images.

The primary objective is twofold: first, to implement and reproduce the super-
resolution technique for 4D Flow MRI as presented in Fathi’s paper, and second,
to critically analyze the vanilla Physics-Informed Neural Networks (PINNs) ap-
proach used in the paper. Our goal is to identify fundamental flaws in the vanilla
PINN methodology and present theoretical solutions to these issues. While we do
not experimentally explore these solutions, we aim to provide a comprehensive
theoretical framework for potential improvements. This work seeks to contribute
to the field by not only validating existing research but also by highlighting areas
for future advancements in the application of PINNs to medical imaging and fluid
dynamics problems.
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Chapter 3

State of the Art

Super-resolution and denoising of 4D flow MRI have been critical areas of re-
search, aiming to enhance the quality and resolution of cardiovascular imaging
data. Over the years, researchers have explored various approaches to tackle
these challenges, each with its own strengths and limitations. Traditional meth-
ods, such as interpolation and filtering techniques, were initially used to improve
image quality. However, these approaches often struggled with preserving fine
details and handling complex flow patterns. This limitation paved the way for
more advanced techniques, particularly those leveraging the power of artificial
intelligence and deep learning. Convolutional Neural Networks (CNNs) have
emerged as a powerful tool in this domain. Shit et al. (2022) [18] introduced
SRflow, a deep learning-based approach for super-resolution of 4D flow MRI
data. This method demonstrated significant improvements in spatial resolution
while maintaining the accuracy of hemodynamic measurements. CNNs excel
at capturing spatial features and have shown remarkable success in enhancing
image quality. Building upon the success of CNNs, researchers have explored
more sophisticated architectures. U-Net based models, originally developed for
biomedical image segmentation, have been adapted for super-resolution tasks in
4D flow MRI. These architectures are particularly effective due to their ability to
capture and combine features at different scales. Generative Adversarial Net-
works (GANs) represent another significant advancement. By pitting two neural
networks against each other – one generating enhanced images and the other dis-
criminating between real and generated images – GANs have shown promise in
producing high-quality, realistic 4D flow MRI data. Ensemble learning approaches
have also gained traction [7]. Ericsson et al. (2024) [5] proposed a method that
extends super-resolution techniques across the entire cardiovascular system using
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ensemble learning. This approach demonstrates the potential for more general-
ized and robust super-resolution methods. As the field progressed, researchers
began to recognize the importance of incorporating domain-specific knowledge
into these AI models. This realization led to the development of physics-informed
approaches, most notably Physics-Informed Neural Networks (PINNs). PINNs,
introduced by Raissi et al. [16], integrate physical laws directly into the neural
network architecture, ensuring that the enhanced images not only look better
but also adhere to the underlying fluid dynamics principles, PINN was shown
to performe well in the context of super-resolution and denoising of 4D Flow
MRI using PINN Shone et al. [19]. Attention mechanisms and Transformers,
which have revolutionized natural language processing, are now being applied
to medical imaging tasks. He et al. (2020) [10] explored the use of deep attention
networks for MRI super-resolution, showcasing the potential of these techniques
in capturing long-range dependencies in imaging data, also Wang et al. (2022)
[24] introduced TransFlowNet, a physics-constrained Transformer framework for
spatio-temporal super-resolution of flow simulations. While not specifically de-
veloped for 4D flow MRI, this approach demonstrates the potential of combining
advanced AI architectures with physical constraints.

As the field continues to evolve, there’s a growing trend towards integrating
multiple techniques and leveraging domain-specific knowledge. The future of
super-resolution and denoising in 4D flow MRI likely lies in approaches that
can effectively combine the strengths of deep learning and physical principles to
produce accurate, high-resolution, and physically consistent flow fields.

Physics-Informed Neural Networks (PINNs) are showing great promise in im-
proving 4D flow MRI, especially compared to other AI methods. Working with
4D flow MRI data is like trying to find your way in a dark, unfamiliar neigh-
borhood - the data is often noisy and unreliable. While traditional approaches
like Convolutional Neural Networks (CNNs) can spot some patterns, and Gen-
erative Adversarial Networks (GANs) can create realistic-looking images they’re
like using a weak flashlight - helpful, but limited. Attention mechanisms and
transformers, which are good at focusing on important details, are like having a
spotlight, but they might miss the bigger picture. In this tricky situation, adding
physical principles from fluid mechanics to the neural network is like giving it a
steady-burning candle to light the way. This ”candle” of knowledge, mainly in the
form of Navier-Stokes equations, helps PINNs navigate through the messy data
and find realistic solutions. While other AI methods might stumble around or get
distracted by misleading patterns, PINNs use the light of physics to understand
blood flow patterns, even where the data is as unclear as a pitch-black street.
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Recent studies have shown that this physics-guided approach works better than
older methods, much like someone with a reliable light source would find their
way better than someone with unreliable or partial lighting.

The main reason we choose to work with PINNs is their remarkable flexibility.
They can be seamlessly integrated with Convolutional Neural Networks (CNNs),
leveraging CNNs’ ability to capture spatial features while enforcing physical con-
straints. PINNs also work well with attention mechanisms and transformers,
allowing the model to focus on critical flow regions while ensuring physical con-
sistency. Moreover, PINNs can be incorporated into Generative Adversarial Net-
work (GAN) frameworks, combining the realism of GAN-generated images with
physics-based accuracy. This integration capability means PINNs don’t replace
other AI methods but enhance them, acting like a physics-aware plugin that can
be added to various neural network architectures. By doing so, PINNs address
the limitations of pure data-driven approaches, adding a layer of physical under-
standing to these powerful AI tools. This flexibility allows researchers to leverage
the strengths of different AI methods while ensuring the results adhere to funda-
mental fluid dynamics principles, potentially leading to more accurate, physically
consistent, and reliable 4D flow MRI enhancements.

Physics-Informed Neural Networks (PINNs) represent a significant leap in
the intersection of machine learning and scientific computing. These innovative
neural network architectures integrate well-established physical laws directly into
the learning process, ensuring that the solutions they generate adhere to funda-
mental physical principles. By embedding these physical constraints, PINNs can
efficiently solve forward and inverse problems across a wide range of domains, in-
cluding fluid dynamics [14], quantum mechanics [17], reinforcement learning [13]
[8], etc. This approach not only enhances the accuracy and reliability of the solu-
tions but also reduces the dependency on large datasets, making PINNs a powerful
and versatile tool for tackling complex scientific and engineering challenges

3.1 Physical Knowledge

When we refer to physical knowledge, we mean differential equations, intuitive
physics, and symmetry principles. Differential equations are fundamental math-
ematical expressions that relate the rate of change of a function to the function
itself. Intuitive physics comprises principles commonly employed by physicists
when analyzing or solving problems, such as energy or momentum conservation
laws, the principle of least action, Newton’s laws of motion, and gravity. Sym-
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metry refers to the various ways in which a phenomena exhibit independence.
For instance, the laws of motion remain consistent regardless of time, meaning
they exhibit time symmetry. Similarly, translation symmetry, scale symmetry, and
rotational symmetry are examples of how phenomena maintain consistency across
different spatial and dimensional scales.

How we can combine physical knowledge and deep
learning ?

Physical knowledge can be seamlessly integrated into deep learning models through
diverse avenues such as data augmentation, architectural design, objective for-
mulation, and optimization techniques. For instance, we can enhance datasets
by leveraging symmetries inherent in physical problems. Moreover, embedding
physics into model architecture fitted to specific problems is a promising approach.
Incorporating physical insights into loss functions through regularization terms or
by redefining them to exploit physics further enriches model training. Addition-
ally, refining optimization algorithms to achieve faster convergence and greater
stability is another avenue for integrating physical understanding into machine
learning frameworks.

3.2 Vanilla PINN

In this section will provide a detailed presentation of the original PINN algorithm
as firstly described in the Raissi et al [16]. PINN generally deals with Partial Dif-
ferential Equations, we will formulate the Partial Differential Equations as follow:

∂ f (x, y, z, t)
∂t

+N[ f ,C] = 0 (3.1)

f represents a function that could represents any physical phenomena, N repre-
sents non-linear operator acting on f where C represents constants belong to the
theory of the phenomena e.g gravitational constant or coulomb constant.
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3.2.1 PINN Steps

Informally

Our goal is to find f , we will use a neural network to approximate fNN and train it
on data points x1, ..., xN that are gathered from experiences, we use this data point
to train the model as a normal supervised learning task, we force the model to
satisfy the physics by using a regularization term in the loss function, the same
strategy is used to satisfy the boundary conditions. The idea is that generally
the nonlinear part of PDEs involve doing nested operations to fNN with respected
to the input parameters, which auto-differentiation offered by machine learning
libraries like TensorFlow and PyTorch make it straight forward.

Formally

Data Gathering

According to the problem at hand, various strategies could be used to gather
relevant data points, e.g if data is hard to get we could use invariants that are
present in the physical phenomena e.g scale and orientation to augment the size
of data set

Network Architecture

A neural network fNN(x, y, z, t;θ) is used to approximate to a function f (x, y, z, t)
for some phenomena. Note : we could choose from a variety of architecture but
some architectures are more suitable for some problems

Loss Function

We guide the network to the right solution by adding regulations terms. The loss
function is as follow :

LPINN = λdLData + λrLPDE + λbLBC + λiLI (3.2)

where

LData =
1

Nd

Nd∑
i=1

∥ f (xi, yi, zi, ti) − fNN(xi, yi, zi, ti;θ)∥2 (3.3)
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represents normal supervised learning.

LPDE =
1

Nr

Nr∑
i=1

∥
∂ fNN(xi, yi, zi, ti;θ)

∂t
+N[ fNN,C;θ]∥2 (3.4)

represents the physical constraints, this term gets minimal if the network satisfies
the partial differential equations.

LBC =
1

Nb

Nb∑
i=1

∥ f (xi, yi, zi, ti) − fNN(xi, yi, zi, ti;θ)∥2 (3.5)

represents the initial conditions loss

LI =
1

Ni

Ni∑
i=1

∥ f (xi, yi, zi, t0) − fNN(xi, yi, zi, t0;θ)∥2 (3.6)

this terms are similar to the data loss term ,it informs the network about the
behavior of the phenomena in boundaries and initial conditions.

Note: the λx∈{d,r,b,i} are used to control the contribution of the corresponding
regularization term.

Optimization

Any optimization algorithm could be used but Adam optimizer is usually the
choice.

3.2.2 Use cases of PINN

The applications of Physics-Informed Neural Networks (PINNs) span an impres-
sively broad spectrum, demonstrating their versatility and power across various
scientific and engineering domains. From intricate fluid mechanics problems to
cutting-edge deep reinforcement learning tasks, PINNs have proven to be a valu-
able tool in integrating physical knowledge with data-driven approaches. This
wide-ranging applicability is comprehensively explored in ”Physics-Informed
Machine Learning: A Survey on Problems, Methods and Applications” by Hao
et al. [9]. This seminal work provides a detailed and insightful overview of the
diverse applications of physics-informed machine learning techniques, with a par-
ticular focus on PINNs. The survey not only catalogues the extensive use cases
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but also delves into the various methodological approaches within the physics-
informed machine learning paradigm. By examining both the practical imple-
mentations and theoretical foundations, the survey offers a complete view of the
field, highlighting how PINNs and related techniques are revolutionizing the in-
tersection of physical sciences and artificial intelligence. While the effectiveness
and diverse utility of PINNs have been extensively highlighted, it is crucial to
examine the various innovative approaches researchers have taken within this
framework. Berg et al [2]., for instance, applied PINNs to predict fluid dynamics
in complex geometries, concluding that the framework’s performance is optimized
with deeper networks and extended training epochs. This insight underscores the
importance of architectural decisions in PINN implementations. In the context of
medical imaging, Shone et al [19]. enhanced the vanilla PINN framework with
loss reweighting techniques to predict complex synthetic blood flows, specifically
addressing super-resolution challenges in 4D Flow MRI. Their work demonstrates
the adaptability of PINNs to specialized medical applications. Arzani et al[1].
further extended the application of vanilla PINNs to the intricate task of comput-
ing near-wall blood flow and wall shear stress in complex aneurysm geometries,
showcasing the framework’s capability in handling highly specific and critical
medical scenarios. Taking a different approach, Zhao et al [26]. introduced a novel
PINN variant based on the Transformer architecture, designed to account for com-
plex temporal relations in fluid dynamics. Chiu et al. [3] used PINN framework
to accuratly model electrophysiology in 3D geometries in fibrillatory conditions(a
type of cardiac arrhythmia characterized by rapid, irregular, and uncoordinated
contractions of heart muscle fibers). This innovations highlights the ongoing evo-
lution of PINNs, as researchers continue to integrate advanced machine learning
concepts to enhance the framework’s capabilities in capturing intricate physical
phenomena across various domains.

3.2.3 Advantages of PINN

Physics-Informed Neural Networks (PINNs) are a powerful approach for solving
problems that are governed by partial differential equations (PDEs) and other types
of differential equations. They have several advantages compared to traditional
numerical methods and other machine learning approaches:

1. Incorporation of Physical Laws : PINNs incorporate physical laws di-
rectly into the loss function, ensuring that the solutions respect known physical
principles. By embedding the PDEs into the neural network’s training process,
PINNs can leverage known physics to guide the learning process, leading to more
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accurate and reliable solutions.
2. High-Dimensional Problems : PINNs can efficiently handle high-dimensional

problems. Traditional numerical methods suffer from the ”curse of dimension-
ality,” where computational cost grows exponentially with the number of di-
mensions. PINNs, leveraging the power of neural networks, can manage high-
dimensional spaces more effectively.

3. Parallel Computing : PINNs can leverage modern parallel computing
architectures. Neural networks can be trained on GPUs or TPUs, which allows
for efficient parallel computation and significantly speeds up the training process
compared to traditional CPU-based numerical methods.

4. Reduced Computational Cost for Complex Simulations : PINNs can
reduce computational costs for certain complex simulations. For problems where
traditional methods are computationally expensive, PINNs can offer a more effi-
cient alternative, especially in cases requiring repeated simulations under varying
conditions.

3.2.4 Disadvantages of PINN

While PINNs offer many advantages, they also come with certain disadvantages
and limitations. Here are some of the key challenges and drawbacks associated
with PINNs:

1. Training Complexity and Stability :
Training PINNs can be complex and unstable. The loss functions in PINNs

often involve multiple terms (e.g., data loss, boundary condition loss, and physics
loss), which can lead to challenges in balancing these terms. Training might require
careful tuning of hyperparameters and can be sensitive to initial conditions and
network architecture.

2. Lack of Convergence Guarantee :
PINNs do not always guarantee convergence to the correct solution, Due to

the complexity of the loss landscapes in neural networks and the intricacies of
incorporating physical laws, PINNs might converge to local minima or suboptimal
solutions. The optimization process can be highly sensitive to initial conditions,
hyperparameters, and network architecture, making it challenging to ensure that
the network will find the correct solution.

3. Approximate Solutions :
PINNs often provide approximate rather than exact solutions to differential

equations. PINNs typically produce approximate solutions. The accuracy of these
solutions depends on various factors, including the quality of the training data,
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the complexity of the neural network, and the effectiveness of the optimization
algorithm. In practice, achieving high precision may require extensive tuning and
significant computational resources.

4. Limited Generalizability :
PINNs may not generalize well beyond the conditions for which they were

trained. While PINNs can interpolate within the range of the training data, their
ability to extrapolate to unseen conditions or different physical scenarios is limited.
This is particularly problematic when the system behavior outside the training
range is critical for practical applications. The neural network may fail to capture
the correct physical behavior in regions where it has not been trained, leading to
unreliable predictions.

3.3 PINN Variants

The following section explores different techniques that could mitigate the draw-
backs of PINN;

3.3.1 Loss Reweighing

Reweighing is a technique employed in PINNs to solve the training stability prob-
lem [23], by dynamically adjust the weights of loss terms. This adjustment prevents
any individual loss term, particularly the one representing differential equations,
from dominating the training process. Formally, we compute the maximum up-
date value for each neural network weight corresponding to a particular loss term.
Then, we compare this value with the update value according to the differential
equations. The ratio obtained provides the necessary information for dynamically
updating the weights of the loss terms.

λ̂x =
max{∇θLx}

∇θLr
(3.7)

λx = (1 − α)λx + αλ̂x (3.8)

3.3.2 Data Resampling

The concept of resampling involves dynamically selecting points at which we
enforce physics Das et al. [4]. These points can be chosen randomly each time
or according to a specified distribution. Moreover, we can refine this approach
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by adjusting the probabilistic distribution so that areas with higher error rates are
more likely to be selected for enforcing physics.

3.3.3 Novel Objective

The concept aims to leverage the higher-order derivatives of the differential equa-
tions loss term to accelerate the convergence of the model.

3.3.4 Novel Architecture

Numerous approaches are employed to tailor architectures for problems inter-
twined with physics. These include optimizing activation functions, utilizing
embeddings, employing multiple neural networks, employing sequential and con-
volutional architectures, and employing domain decomposition strategies.

Activation functions

In general ReLu, tanh, Sigmoid and sin are the most used activation functions used
in neural network, in the context of PINN usually functions that are differentiable
multiple times are chosen. The Swish activation function is used as a smoothed
approximation of ReLU

Swish(x) = x. Sigmoid(β x) (3.9)

β is a hyperparameter.
Some studies suggest using adaptive activation functions Jagtape et al. [11],

σ(na.x) (3.10)

such that n is a hyperparameter and a is a learnable parameter.

Sequential architectures

Sequential architectures such as RNN, LSTM, or GRU offer the potential to enhance
the model’s capability to capture the intricate dynamics within physical systems.

Convolutional architectures

Additionally, CNN architectures can provide a spatially broad solution rather
than focusing on individual points. Combining convolutional and sequential
architectures may present a logical approach for addressing certain problems.
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Transformer architecture

Physics-Informed Neural Networks (PINNs), which typically rely on multilayer
perceptrons (MLP), often overlook the important temporal dependencies that are
fundamental in practical physics systems. This oversight can lead to difficulties
in accurately propagating initial conditions across the system and capturing the
correct solutions under different circumstances. In Zhao et al. (2024) [26] paper, a
new Transformer-based framework called PINNsFormer 3.3.4 was introduced, de-
signed to overcome these limitations. PINNsFormer utilizes multi-head attention
mechanisms to effectively capture temporal dependencies and accurately approx-
imate solutions to partial differential equations (PDEs). It transforms point-wise
inputs into pseudo sequences and adopts a sequential loss instead of the typical
point-wise PINNs loss. Additionally, PINNsFormer incorporates a novel activa-
tion function named Wavelet, wavelet(x) = w1 sin(x)+w2 cos(x) designed to facilitate
Fourier decomposition within deep neural networks. Empirical results show that
PINNsFormer offers enhanced generalization capabilities and accuracy in vari-
ous scenarios, including those where traditional PINNs struggle and in solving
high-dimensional PDEs. Furthermore, PINNsFormer is versatile, allowing for the
integration of existing learning approaches for PINNs, which boosts its overall
effectiveness.

Figure 3.1: PINNsFormer architecture
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Chapter 4

Methodology

4.1 Introduction

This chapter describes our implementation and testing of a super-resolution method
for 4D Flow MRI, based on the work presented in Fathi et al. [6].

Our work focused on implementing and validating this method through a
series of steps:

• Poiseuille Flow

• Navier-Stokes Equations

• Gaussian Quadratures

• Complex Image Representation

• Test on Poiseuille Flow

• Test on CFD

4.1.1 Navier-Stokes Equations in Neural Network Framework

We implemented the Navier-Stokes equations within our neural network frame-
work as described in Fathi’s paper.

Validation Test:

• We selected points exclusively from the surface of the pipe, including the
base discs.
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• Using these boundary points, we trained our neural network to predict the
velocity field inside the pipe guided mainly by the Navier stokes residual.

• We then compared the network’s predictions with the analytical Poiseuille
flow solution.

• Convergence of the network predicted velocity field to the known analytical
solution confirmed the correct implementation of this foundational step.

4.1.2 Gaussian Quadrature for MRI Signal Simulation

We implemented Gaussian Quadrature to simulate how MRI machines measure
average velocity. Appeal to Appendix C.4 for more information about Gaussian
Quadrature.

Validation Test:

• We tested our Gaussian quadrature implementation on functions with known
analytical solutions.

• we used these quadratures to compute average velocities from our neu-
ral network outputs and verified that they matched expected patterns for
Poiseuille flow averaged.

4.1.3 Complex Image Representation of MRI Signals

Following Fathi’s approach, we implemented a method to represent MRI signals as
complex images, with magnitude representing signal strength and phase encoding
velocity information.

Validation Test:

• We generated complex images from known velocity fields (e.g., Poiseuille
flow) and verified that the magnitude and phase correctly represented the
expected signal strength and velocity patterns.

• We then trained our neural network using these complex images as input
and verified that it could accurately reconstruct the original velocity fields.
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4.1.4 Noise Robustness Testing

Throughout our implementation, we tested the method’s robustness to noise.
Validation Test:

• We added 5% of maximum velocity noise to our data in the fidelity term.

• This noisy data was used in training and testing across all previous steps
(Poiseuille flow, Navier-Stokes implementation, Gaussian quadrature, and
complex image representation).

• We verified that our implementation could still produce accurate results
despite this added noise, demonstrating robustness to realistic MRI noise
levels.

4.1.5 Validation with Simulated Aortic Flow

As a final test, we applied our implementation to a more physiologically relevant
scenario: simulated blood flow in an aorta Figure 4.1.5.
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Figure 4.1: Aorta anatomy

Validation Test:

• We used synthetic data representing aortic flow, which is more complex than
Poiseuille flow but still has known characteristics.

• We applied our full pipeline - from complex image generation to neural
network reconstruction - to this aortic flow data.

• We evaluated our reconstructed flow fields by comparing them to the ground
truth synthetic data.

• We also verified that the reconstructed flow adhered to expected physiolog-
ical patterns and satisfied the Navier-Stokes equations.
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Through these validation steps, we ensured that each component of our im-
plementation of Fathi’s super-resolution method for 4D Flow MRI was function-
ing correctly. This systematic approach allowed us to confidently reproduce the
method’s effectiveness in improving the resolution and accuracy of 4D Flow MRI
data, potentially contributing to better analysis of blood flow patterns in cardio-
vascular studies.

In the following sections, we will begin by rigorously describing the Poiseuille
Flow, Gaussian quadratures, Complex images, and the metrics used to evaluate
the algorithm. For readers seeking a foundational understanding of fluid me-
chanics principles, we recommend referring to Appendix B.2.2, which provides a
comprehensive overview of the subject.

4.1.6 Poiseuille Flow :

Poiseuille flow, also known as Hagen–Poiseuille flow, describes the laminar flow
of a viscous, incompressible fluid through a cylindrical pipe with constant circular
cross-section. This flow regime is characterized by a parabolic velocity profile,
with the maximum velocity at the center of the pipe and zero velocity at the walls
due to the no-slip condition. The flow is driven by a pressure gradient along
the pipe’s axis, and its behavior is governed by the Navier-Stokes equations. In
Poiseuille flow, the velocity at any point in the pipe is directly proportional to
the pressure gradient and the square of the radial distance from the pipe’s center,
and inversely proportional to the fluid’s viscosity. This model is widely used
in various fields, including physiology to understand blood flow in vessels, and
in engineering applications involving pipe flows. The simplicity of its analytical
solution makes Poiseuille flow an ideal benchmark for testing computational fluid
dynamics models and algorithms.

Imagine blood flow through a pipe of length L and radius R We define a systeme
of Cartesian coords in which the center is the center of the pipe x,y axis define the
transverse planes and z axis is the direction of the flow.

The following formula is the poiseuille flow :

V⃗(t, x, y, z) = u⃗(t, x, y, z), v⃗(t, x, y, z), w⃗(t, x, y, z) (4.1)

u⃗(t, x, y, z) = v⃗(t, x, y, z) = 0 (4.2)

w⃗(t, x, y, z) =
∆P
4µL

(R2
− x2
− y2) (4.3)
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Where ∆P is the difference of pressure between the inlet and outlet of the pipe,
and µ is the viscosity of blood.

Figure 4.2: Longitudinal Velocity Profile in a Cylindrical Pipe at x=0, time step t=0
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Figure 4.3: Transverse Velocity Profile in a Cylindrical Pipe at z=0, time step t=0

4.1.7 Normalization

Normalization plays a crucial role in the effective implementation of Physics-
Informed Neural Networks (PINNs) for fluid dynamics problems . By expressing
these complex equations in terms of dimensionless variables, normalization brings
several advantages to the PINN framework. It enhances numerical stability by
scaling variables to similar ranges, typically between 0 and 1, which prevents
issues arising from vastly different magnitudes in the neural network’s architec-
ture. This scaling also improves learning efficiency, as neural networks generally
perform better with uniformly scaled inputs and outputs. Moreover, normalized
equations introduce important dimensionless parameters, such as the Reynolds
number, which encapsulate the essential physics of the flow. This allows PINNs
to capture fundamental flow characteristics without being tied to specific dimen-
sional values, thereby improving their generalization capabilities across different
flow scenarios. The normalized form also simplifies the implementation of physi-
cal constraints, like incompressibility, and makes it easier to balance the influence
of various terms in the equations when formulating the loss function. Conse-
quently, normalization not only aids in the numerical aspects of training but also
helps PINNs to more accurately and efficiently represent the underlying physics
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of fluid flow, making it an indispensable step in applying neural networks to com-
plex fluid dynamics problems. Coordinates and Velocity filed also pressure will
be Normalized according to the following formulas:

x = Lx̂ u = Uû t = Tt̂

y = Lŷ v = Uv̂ p = ρU2p̂
z = Lẑ w = Uŵ

(4.4)

4.1.8 Incompressible Navier Stokes Equations

The Incompressible Navier-Stokes equations are a set of partial differential equa-
tions that describe the motion of incompressible fluids. They are fundamental to
fluid dynamics and are used to model a wide range of phenomena, from blood
flow in veins to weather patterns in the atmosphere.

Components of Equations

1. Two Navier-Stokes Equations: These govern the momentum of the fluid.

2. Conservation of Mass Equation: Also known as the continuity equation.

The following are the Incompressible Navier Stokes Equations in vectorized
form:

ρ

(
∂u
∂t
+ u · ∇u

)
= −∇p + µ∇2u + F (4.5)

∇ · u = 0 (4.6)

F represents external forces(gravitation or electromagnetic forces) which will be
neglected, Appendix B.2.2 present the derivation of incompressible Navier Stokes
equations.

Normalized Navier Stokes equations

L
UT
∂û
∂t̂
+ û · ∇û = −∇p̂ +

µ

ρUL
∇

2û (4.7)

∇ · û = 0 (4.8)
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Navier Stokes Equations (scalar form)

ρ

(
∂u
∂t
+ u
∂u
∂x
+ v
∂u
∂y
+ w
∂u
∂z

)
= −
∂p
∂x
+ µ

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
(4.9)

ρ

(
∂v
∂t
+ u
∂v
∂x
+ v
∂v
∂y
+ w
∂v
∂z

)
= −
∂p
∂y
+ µ

(
∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

)
(4.10)

ρ

(
∂w
∂t
+ u
∂w
∂x
+ v
∂w
∂y
+ w
∂w
∂z

)
= −
∂p
∂z
+ µ

(
∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2

)
(4.11)

∂u
∂x
+
∂v
∂y
+
∂w
∂z
= 0 (4.12)

Normalized Navier Stokes Equations (scalar form)

Eu =
L

UT
∂u
∂t
+ u
∂u
∂x
+ v
∂u
∂y
+ w
∂u
∂z
+
∂p
∂x
−
µ

ρUL

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
= 0 (4.13)

Ev =
L

UT
∂v
∂t
+ u
∂v
∂x
+ v
∂v
∂y
+ w
∂v
∂z
+
∂p
∂y
−
µ

ρUL

(
∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

)
= 0 (4.14)

Ew =
L

UT
∂w
∂t
+ u
∂w
∂x
+ v
∂w
∂y
+ w
∂w
∂z
+
∂p
∂z
−
µ

ρUL

(
∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2

)
= 0 (4.15)

Ec =
∂u
∂x
+
∂v
∂y
+
∂w
∂z
= 0 (4.16)

This is the form of navier stokes equations that will be used to enforce physics
in the neural networks.

4.2 Algorithm Pipeline

This section showcases the algorithm presented in Fathi et al. [6], see Figure 4.2
which represent the algorithm in the form of a pipeline, in the following we will
briefly explain each part.
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Figure 4.4: The complete pipeline of the algorithm to be tested
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1. Geometry: Defines the physical structure or domain for fluid flow study.

2. Coordinate Systems:

• Coordinates pinn: Discretized coordinates for the PINN model.

• Coordinates data: Coordinate system of actual or simulated data.

3. Poiseuille Flow: Incorporates Analytical Poiseuille flow solution.

4. Normalization: Ensures all data is on a comparable scale for neural network
training.

5. Neural Network (NN): The core PINN model trained to solve the fluid flow
problem, see Figure 4.2.1.

6. Gaussian Quadrature: Numerical integration technique for efficient com-
putation of averages or integrals.

7. Complex Images: Processing of flow data into complex-valued images, sim-
ilar to 4D Flow MRI.

8. Loss Functions:

• Navier-Stokes Loss: Enforces physics constraints based on Navier-
Stokes equations.

• MSE (Mean Squared Error): Compares predicted flow complex repre-
sentation with expected results.

9. Total Loss: Combination of Navier-Stokes Loss and MSE for network train-
ing.

10. Feedback Loop: Iterative process updating network parameters based on
computed loss.

4.2.1 Network Architecture

The neural network architecture employed in this study is a straightforward fully
connected design, comprising an input layer, 4-8 hidden layers, and an output
layer. The input layer accepts a 4D vector representing the normalized spatio-
temporal coordinates. Each of the four hidden layers consists of 29 neurons and
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Figure 4.5: The structure of the neural network

utilizes the hyperbolic tangent (tanh) activation function, which introduces non-
linearity and allows the network to learn complex patterns. The output layer
produces a 5D vector, encompassing three components of the velocity field, the
pressure, and the MRI signal. This architecture enables the network to map the
input coordinates to the desired flow characteristics comprehensively. The output
of the network is not only used directly but also serves as a basis for calculating
additional quantities of interest, such as gradient or Laplacian with respect to the
input, which are essential for enforcing physical constraints and evaluating the
flow behavior in subsequent analyses.

4.2.2 Average Velocity Via Gaussian Quadratures

The simulation of 4D Flow MRI data using average velocities as targets represents
a sophisticated approach to bridging the gap between high-resolution fluid dy-
namics simulations and the realities of medical imaging. This method involves
calculating the average velocity for each voxel by integrating over a small sur-
rounding volume in both space and time, mimicking the data acquisition process
in MRI. However, computing this 4D integral directly is computationally inten-
sive and often impractical. To address this challenge, Gaussian Quadrature is
employed as an efficient numerical approximation technique. This approach care-
fully selects specific sampling points within the 4D space-time volume of each
voxel and assigns them appropriate weights, allowing for an accurate estimation
of the average velocity with significantly reduced computational cost. By uti-
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lizing this method, researchers can create more realistic simulations that closely
align with actual MRI measurements, potentially improving the accuracy of blood
flow models and enhancing the development of diagnostic tools in cardiovascular
medicine. Furthermore, this technique offers a valuable framework for validating
computational fluid dynamics models against clinical MRI data, thereby advanc-
ing our understanding of complex flow phenomena in the human body. the
following integral define the average velocity in a point by the integral over the
spatio-temporel coordinates of velocities around it:

ūnn =
1

∆t∆x∆y∆z

∫
∆t

∫
∆x

∫
∆y

∫
∆z

unn dt dx dy dz (4.17)

this integral can be approximated by the Gaussian quadrature :

ūnn ≈
1

∆t∆x∆y∆z

s∑
i=0

n∑
j=0

m∑
k=0

p∑
l=0

wiw jwkwl unn(ti, x j, yk, zl) (4.18)

For more details about the theoretical basis of Gaussian quadratures refer to Ap-
pendix C.

4.2.3 Complex Images

complex images is a way to simulate the acquisition process of 4D Flow MRI, we
begin by defining kr which is directly linked to v enc which represent the 3D vector
that represents the maximum speed of flow in each direction. In practice we use
venc is set to be the same for all directions.

kr =
1

2 venc
(4.19)

Sr
NN = mNN · e−i2πkr·uNN = mNN[cos(2πkr · uNN) − i sin(2πkr · uNN)] (4.20)

4.3 Metrics

The metrics used to evaluate the performance of the network are versatile and
enable different viewpoints on the quality of the predictions. These metrics fall
into two main categories, each serving a distinct purpose in assessing the net-
work’s output. The first category consists of similarity indices, which calculate the
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similarity between the true velocity field and the predicted field. These indices
provide a measure of how well the predicted field aligns with the actual field in
terms of direction and magnitude. The second category comprises normalized
mean square error metrics, which quantify the error between the velocity field
and the predicted field. These error metrics offer a more direct measure of the
discrepancy between the predicted and actual values, providing insight into the
accuracy of the network’s predictions. By employing both types of metrics, we
can gain a comprehensive understanding of the network’s performance, assessing
both the overall similarity of the predicted flow patterns and the precise accuracy
of the velocity predictions.

Normalized mean square error

speed Normalized Mean Root Square Error quantify the difference between the
predicted and real speed.

sNMRSE =
1

max |vre f |

√√
1
N

N∑
i=1

(|v| − |vre f |)2
i (4.21)

velocity Normalized Mean Root Square Error quantify the angle between the
predicted and real velocity.

vNMRSE =
1

max |vre f |

√√
1
N

N∑
i=1

(v − vre f )2
i (4.22)

Similarity Indices

ASI compute angle similarity between predicted and real velocity field, ASI=0
means predicted and real velocity are in different ways, ASI=1 they are facing the
same direction.

ASI =
1
2

(
1 +

vrec · vre f

|vrec||vre f |

)
(4.23)

MSI compute the magnitude similarity between predicted and real velocity field.

MSI = 1 −

∣∣∣∣∣∣ |vrec|

max(|vrec|)
−

|vre f |

max(|vre f |)

∣∣∣∣∣∣ (4.24)

SI quantify the overall similarity between the predicted and real velocity field.

SI = ASI ·MSI (4.25)
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4.4 Computational Resources

Training was conducted on both a high-performance server and a personal com-
puter for 10,000 epochs. The server was equipped with an Intel(R) Xeon(R) Silver
4116 CPU 2.10GHz with 20 cores, and an NVIDIA GeForce RTX 2080 Ti GPU with
11GB of VRAM. The personal computer used was powered by an AMD Ryzen 9
5900HX processor running at 3.30 GHz, 32 GB of RAM, and an NVIDIA GeForce
RTX 3070 GPU. This dual-setup approach allowed for efficient large-scale com-
putations on the server while enabling rapid prototyping and testing on the local
machine. The combination of these resources provided a robust environment
for training our complex PINN models for 4D Flow MRI super-resolution and
denoising tasks.
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Chapter 5

Results

In this chapter we will present results we get on the test we conducted, in where
we demonstrate the capabilities of the approach.

5.1 Poiseuille Flow

5.1.1 Straight Pipe

coordinates are only taken from the inside and the outside of the pipe, we can
observe that the network near perfectly predict the poiseuille flow.
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Figure 5.1: Comparison of Predicted and Analytical Velocity Profiles with Data in
Poiseuille Flow

5.1.2 Straight Pipe + Noise

We made the previous test more difficult by adding noise of 5% of the maximum
speed.
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Figure 5.2: Comparison of Predicted and Analytical Velocity Profiles with Noisy
Data in Poiseuille Flow

The close alignment of the network prediction (red line) with the analytical so-
lution (blue dashed line) indicates the model’s effectiveness in capturing the true
flow behavior, even in the presence of noisy input data. The scattered green points
illustrate how real data might deviate from the ideal solution due to measurement
errors or natural fluctuations, yet the network successfully filters out this noise to
produce a smooth, physically accurate velocity profile. This visualization effec-
tively demonstrates the neural network’s capability to reconstruct accurate flow
profiles from noisy data in a Poiseuille flow scenario, which is a crucial step in
validating the model for more complex flow situations.

5.1.3 Half Pipe

In this section, we present the results of a critical test designed to evaluate the
generalization capabilities of our neural network model in the context of fluid
flow prediction. Specifically, we examine the performance of the network when
applied to a half-pipe scenario. The unique aspect of this test lies in our approach to
data provision: the network is intentionally fed data from only one side of the pipe.
This deliberate limitation serves as a subtle test of the model’s ability to extrapolate
and accurately predict flow patterns in unseen regions. By restricting the input to
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half of the pipe’s cross-section, we challenge the network to leverage its learned
physics-informed principles and the partial flow information to reconstruct the
complete flow profile. This test is particularly significant as it assesses not just
the network’s ability to interpolate within known data points, but its capacity
to generalize and predict flow behavior in entirely unseen sections of the pipe.
The results of this half-pipe test provide crucial insights into the robustness and
versatility of our model, especially in scenarios where complete data coverage
may not be available or practical to obtain

Figure 5.3: Comparison of Predicted and Analytical Velocity Profiles with Noisy
Data in Poiseuille Flow in half Pipe case

5.1.4 Quantitative Results

We will present the performance of the algorithm with respect to the metrics
previously showcased:
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Figure 5.4: Comparison of Predicted and Analytical Velocity Profiles with Noisy
Data in Poiseuille Flow in half Pipe case

The results demonstrate the robustness and effectiveness of our Physics-Informed
Neural Network (PINN) approach across various flow scenarios. In the straight
pipe case, the model achieves excellent performance with very low error rates
(RMS div: 0.0042, vNRMSE: 0.0034, sNRMSE: 0.0058) and near-perfect similarity
indices (ASI: 0.9999, MSI: 0.9961, SI: 0.99604). Notably, when 5% noise is intro-
duced to the straight pipe scenario, the model maintains its high performance,
with only slight increases in error rates and consistently high similarity indices.
This indicates strong noise resilience. The half straight pipe case with 5% noise
showcases the model’s ability to generalize, as it maintains low error rates and
high similarity indices even when predicting flow in unseen regions. The consis-
tently high ASI (0.9999) across all scenarios underscores the model’s accuracy in
predicting flow directions. Overall, these results validate the PINN’s capability
to accurately reconstruct flow fields, even in the presence of noise and partial
data, which is crucial for enhancing 4D Flow MRI data in clinical applications.
In summary the algorithm achieved less than 1% noise and near perfect score in
similarity indices in all Poiseuille flow test.
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Chapter 6

Conclusion & Discussion

This study has implemented and evaluated a super-resolution and denoising
method for 4D Flow MRI based on Physics-Informed Neural Networks (PINNs),
as proposed by Fathi et al. [6]. Our research has yielded several key findings
we successfully implemented the PINN framework for fluid dynamics problems,
incorporating the Navier-Stokes equations as physical constraints. The model
demonstrated the ability to predict flow patterns accurately, particularly in the
case of Poiseuille flow. Our implementation of Gaussian Quadrature for simulat-
ing MRI signal averaging proved effective, allowing for a more accurate represen-
tation of the MRI acquisition process within the PINN framework. The method
of representing MRI signals as complex images, with magnitude representing
signal strength and phase encoding velocity information, was successfully imple-
mented and validated. The PINN-based approach showed promising results in
handling noisy input data, demonstrating its potential for denoising 4D Flow MRI.
The model was tested on various pipe geometries (straight, tilted, and half-pipe),
showing good generalization capabilities, particularly in the half-pipe scenario
where it accurately predicted flow in unseen regions. In the course of develop-
ing this work, we faced numerous difficulties. First, it’s hard to find the weights
that balance the fidelity loss term and the Navier-Stokes loss term, which tend to
steer the learning towards a solution that satisfies the Navier-Stokes equations but
does not closely match the data. PINNs are also sensitive to learning rate choices.
Additionally, there was no clear method to test the implementation of the Navier-
Stokes equations. Thanks to Mr. Sebastien’s brilliant idea to use only points on the
surface of the pipe and observe if the network converges to Poiseuille flow inside
the pipe, guided only by the Navier-Stokes loss term, we were able to validate our
implementation. Another problem is that while computing integrals by Gaussian
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quadrature is efficient when dealing with simple functions, it becomes challenging
for complex functions. In these cases, you need to use more Legendre polynomi-
als in each dimension to accurately capture the complex patterns in the function’s
behavior. If n is the number of Legendre polynomials used for each dimension,
you will need 2n weights for each voxel. For example, if you choose 2 Legendre
polynomials to be used for each dimension in a 4-dimensional space, you have
24 = 16 weights for each voxel which exponentially increases computation.

6.1 Discussion of Results

6.1.1 Effectiveness of PINN for 4D Flow MRI

The successful implementation and validation of the PINN-based approach for 4D
Flow MRI super-resolution and denoising demonstrate the potential of this method
in improving medical imaging techniques. The ability of PINNs to incorporate
physical laws (in this case, the Navier-Stokes equations) provides a significant ad-
vantage over traditional deep learning approaches, especially in scenarios where
data might be limited or noisy.

6.1.2 Implications for Clinical Applications

The improved resolution and reduced noise in 4D Flow MRI data could have sub-
stantial clinical implications. Enhanced image quality could lead to more accurate
diagnoses of cardiovascular conditions, better treatment planning, and improved
monitoring of disease progression. The ability to generate high-resolution flow
fields from lower-resolution data could also potentially reduce MRI acquisition
times, improving patient comfort and reducing healthcare costs.

6.1.3 Challenges and Limitations

Despite the promising results, several challenges and limitations were identified,
the PINN approach, while effective, is computationally intensive, particularly for
complex geometries and high-resolution outputs. Finding the optimal balance
between data fidelity and physical constraints in the loss function required careful
tuning. While the method performed well for Poiseuille flow and showed promise
for aortic flow, its effectiveness for more complex, turbulent flows remains to be
fully validated. Our study primarily used simulated data. The performance of the
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method on real-world 4D Flow MRI data, with all its inherent complexities and
artifacts, needs further investigation.

6.2 Future Research Directions

Based on our findings and the limitations identified, we propose several directions
for future research, explore more sophisticated PINN architectures, such as those
incorporating attention mechanisms or adaptive activation functions, to improve
performance and reduce the need for parameter tuning, appeal to Appendix D.1.5
for a deep dive into the flaws of PINN and the proposed solutions. Also investi-
gation of transfer learning techniques to adapt models trained on simulated data
to real-world 4D Flow MRI data is needed. Another interesting idea is developing
methods to quantify uncertainties in the super-resolved and denoised outputs,
which is crucial for clinical decision-making. Conducting comprehensive com-
parisons with other super-resolution and denoising techniques, including both
traditional and deep learning-based methods is also needed.

6.3 Concluding Remarks

This research has demonstrated the potential of Physics-Informed Neural Net-
works in enhancing 4D Flow MRI through super-resolution and denoising. By
leveraging the power of deep learning while respecting fundamental physical
principles, this approach offers a promising path towards more accurate and de-
tailed cardiovascular imaging. As we continue to refine these methods and address
the identified challenges, we anticipate significant advancements in both the tech-
nical capabilities of medical imaging and its clinical applications. The integration
of physics-based modeling with data-driven approaches represents a frontier in
medical image analysis, holding the promise of improved patient care and deeper
insights into cardiovascular health.
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Appendix A

Magnetic Resonance Imaging

A.1 Basic Principle of MRI

MRI machines utilize the quantum properties of hydrogen atoms, particularly
their spin, which acts like a tiny bar magnet. Normally, the magnetic fields of
these hydrogen atoms cancel each other out. However, when placed in an MRI
machine’s strong magnetic field, these atoms align along with the direction of this
field.

A.2 Activation of Hydrogen Atoms

The MRI machine generates a brief magnetic pulse using coils that carry alternating
currents. This pulse slightly misaligns the hydrogen atoms from their aligned
position, causing them to shift their magnetic fields perpendicular to the machine’s
main magnetic field.

A.3 Signal Generation

After being nudged, the hydrogen atoms want to return to their initial aligned
state. As they return, they don’t immediately fall back into alignment but instead
spiral back, which causes a change in the magnetic field. This change induces an
electrical current in nearby coils, which is then captured as a signal by the MRI
machine.
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A.4 Coils in MRI Machines

MRI machines might use the same set of coils for sending magnetic pulses and
reading the returning signals. Some advanced machines use separate coils for
transmitting and receiving to improve the image’s contrast and resolution.

A.5 Importance of Magnetic Field Strength

The strength of the MRI’s magnetic field can significantly impact the quality of
the image. Common field strengths for clinical MRIs range from 1.5 to 3 Tesla,
but research MRIs may use fields up to 20 Tesla. Higher magnetic fields provide
a stronger signal and better image quality.

w = −γB

w : Rotational Frequency γ : Gyromagnetic Ratio B : Magnetic Field strength

A.6 Superconducting Coils

To create such high magnetic fields, MRI machines use superconducting coils
made from materials like Niobium-Titanium. These coils require cooling with
liquid helium within a vacuum-sealed chamber to maintain superconductivity
without overheating.

A.7 Energy Consumption

The main energy requirement for an MRI machine is not from generating the
magnetic field but from keeping the superconducting coil cool enough to maintain
its superconductivity. The energy used to operate an MRI machine for a year is
similar to the amount used by 25 average households.
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A.8 MRI Imaging Technique

Instead of capturing individual points or pixels, MRI scans sample patterns of
signals from hydrogen atoms in the body. By varying the timing and intensity
of magnetic gradients, MRIs create and capture different striped patterns across
various directions and frequencies. These patterns are combined to form a detailed
image of a slice of the body.

A.9 Image Formation and Slices

MRI technology collects signals in slices, layer by layer. Each image slice is built
from a complex overlay of various striped patterns, revealing different tissues
based on their unique characteristics like T1 and T2 relaxation times. These times
indicate how quickly hydrogen atoms in different types of tissues realign and lose
uniformity after a magnetic pulse, which affects how the signal decays and is
ultimately visualized.

In the end, for more information i strongly suggest MRI in Practice Catherine
Westbrook 4th edition [25] and specially the first 3 chapters.
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Appendix B

Fluid Mechanics

B.1 Definitions

Fluid

Fluid is a substance that deforms continuously under the application of shear
stress.

Fluid Continuum

In fluids mechanics, their is a minimal volume that under it our calculations are
no more valid and quantum mechanics need to be invoked. For example mass
density in a point is defined as follow :

ρ = lim
∆V→∆V′

∆m
∆V

where ∆V′ is the minimal volume in which the classical formulation of physics
are still valid

Fluid Flow

Assuming the continuum hypothesis ,Fluid flow is a vector Field that maps posi-
tion and time to velocity vector of the fluid in that position in time ,i.e

V⃗ = v⃗(x, y, z, t)

Note: for simplicity we assume Cartesian coordinates
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B.1.1 Laminar and Turbulent Flow

The Reynolds number (Re) is a dimensionless quantity in fluid mechanics that
predicts flow patterns in different fluid flow situations. It is defined as the ratio of
inertial forces to viscous forces within a fluid and is crucial in determining whether
flow will be laminar or turbulent. A low Reynolds number (typically Re < 2300
for pipe flow) indicates laminar flow, characterized by smooth, predictable fluid
motion. Higher Reynolds numbers (Re > 4000 for pipe flow) signify turbulent
flow, marked by chaotic eddies and irregular fluctuations. The Reynolds number
is calculated using the fluid’s density, viscosity, velocity, and a characteristic linear
dimension of the system. It finds widespread application in various fields, includ-
ing aerodynamics, chemical engineering, and civil engineering, where it helps in
designing pipes, aircraft, and other structures that interact with fluids.

Reynolds Number

Re =
ρUL
µ

B.2 Navier-Stokes Equation

Navier-Stokes equation is a system of non-linear partial differential equations that
describe how any fluid evolve through time.

B.2.1 Derivation Navier-Stokes Equation

Continuity equation

Continuity equation is an equation which describes the change an intensive prop-
erty.Intensive property is a property that is independent of the amount of material
e.g Temperature.

d
dt

∫
Ω

L dv = −
∫
∂Ω

Lv⃗.n⃗ dS −
∫
Ω

Q dv

such that −
∫
∂Ω

Lv⃗.n⃗ dS is how much of property L is leaving the volume by
flowing over boundary ∂Ω , and −

∫
Ω

Q dv how much of the property is leaving
the volume to sinks,informally speaking ,the change in the property L is due to
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how much flows out through the volume boundary as well as how much is lost or
gained through sources or sinks inside the boundary

Divergence Theorem ∫
∂Ω

Lv⃗.n⃗ dS =
∫
Ω

∇.(Lv⃗) dV

D.T allows the flux term to be expressed as a volume integral
the previous equation become

d
dt

∫
Ω

L dv = −
∫
Ω

(∇.(Lv⃗) +Q) dV

Leibniz Rule

d
dx

∫ b

a
f (x, y) dy =

∫ b

a

d
dx

f (x, y) dy∫
Ω

(
d
dt

L + ∇.(Lv⃗) +Q) dV = 0

because we want the equation to lead the same result for any arbitrary volume
we got :

d
dt

L + ∇.(Lv⃗) +Q = 0

applying the continuity equation to density :

d
dt
ρ + ∇.(ρv⃗) +Q = 0

if we have no sources or sinks Q = 0 we got :

d
dt
ρ + ∇.(ρv⃗) = 0

for incompressible fluids , the density is constant .so

∇.v⃗ = 0
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Material Derivative

we introduce the following notation to simplify the equation

D
Dt

u =
d
dt

u + (v⃗.∇)u

so the material derivative is the sum of normal rate of change w.r.t time and
the directional derivative in direction of v⃗

B.2.2 Actual derivation of Navier-Stokes equation

Navier-Stokes general form

Now we have all the tools to derive the equation ,the Navier-Stokes equation is
basically the second law of Newton ,substituting the mass by density , we get :

b⃗ = ρ.
d
dt

v⃗(x, y, z, t)

using chain rule we get

b⃗ = ρ.(
∂v⃗
∂t
+
∂v⃗
∂x
∂x
∂t
+
∂v⃗
∂y
∂y
∂t
+
∂v⃗
∂z
∂z
∂t

)

which is equivalent to

b⃗ = ρ.(
∂v⃗
∂t
+ v⃗.∇v⃗)

which is exactly the definition of material derivative

b⃗ = ρ.
Dv⃗
Dt

the body force on the fluid consists of two components fluid stresses and
external forces

b⃗ = ∇.σ + ρ. f⃗

we have the fluid stresses σ consists of pressure P and stress T so

σ = −P.I + T

(I is the identity matrix)
note that we multiply by the I because P is value field .
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substituting the body force by its corresponding expression we get the general
form of Navier-Stokes Equation

ρ.
Dv⃗
Dt
= −∇P + ∇.T + ρ. f⃗

Newtonian Fluids

the stress is proportional to the rate of deformation ,i.e the change in velocity is
direction of the stress

∇.T = µ.∇2v + ρ. f⃗

In-compressible Newtonian fluid we get :

ρ.
Dv⃗
Dt
= −∇P + µ.∇2v + ρ. f⃗

where µ is the viscosity, the conservation of density and

∇.v⃗ = 0

For more information on fluid mechanics, i strongly suggest Fundamentals of
Fluid Mechanics 7 edition by Bruce R. Munson [15].
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Appendix C

Gaussian Quadratures

Introduction :

Gaussian Qudrature is a numerical integration technique to approximate definite
integrals of the form

∫ 1

−1
f (x)dx, while there exists other simpler methods that

shares the same aim as Gaussian Quadratures like the Trapezoidal Rule, Gaussian
Quadrature offers a substantial improvements in accuracy. While Trapezoidal
Rule is more intuitive, Gaussian Quadrature offers superior performance for many
types of integrals.
In the next sections we will discuss how the Trapezoidal Rule works to develop
intuition to better understand the Gaussian Qudratures, after that we will discuss
the Gaussian quadratures for 1 dimensional definite integral, after that we will
discuss how the method is generalized to tackel more complex intergrals, those of
multiple dimensions, we will take 4D as use case, in the end we will discuss how
it fits in th whole picture of our work.

C.1 Trapezoidal Rule

As discussed in the introduction Gaussian Quadratures are more accurate than
Trapezoidal Rule, nevertheless Trapezoidal Rule is good step to understand the
the fundamentals of G.Q. // the idea is to approximate

∫ b

a
f (x)dx by a weigted sum

of f evaluated in the ends of the integral , mathematically:∫ b

a
f (x)dx ≈ wa f (a) + wb f (b)
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the weight wa,wb are chosen to be exact for polynomials,so

wa = wb =
b − a

2∫ a

b
f (x)dx =

b − a
2

f (a) +
b − a

2
f (b)

C.2 Gaussian Quadrature 1D

Gaussian quadrature method approximate an integral in the interval [−1, 1]∫ 1

−1
f (x)dx ≈ Σs

i=1wi f (xi)

nodes x′is are chosen to be the s first roots of the Legendre polynomials,and the
weights w′is are calculated to be exact for polynomials of 2n + 1 degree,

wi =
2

(1 − x2
i )[P′n(xi)]2

C.3 Gaussian Quadratues 4D

given a function f defined f : R4
→ R the integral is approximated as follow :

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
f (t, x, y, z)dtdxdydz ≈ Σs

i=0Σ
n
j=0Σ

m
k=0Σ

p
l=0wiw jwkwl f (ti, x j, yk, zl)

where ti, x j, yk, zl are the nodes for the quadrature in each dimension,and
wi,w j,wk,wl are the corresponding weights.
the steps for approximation such an integral is as follow :

1. choose the number of nodes in each dimension (it could be the same for
every dimension)

2. compute the nodes for each dimension

3. form a grid for all combinations of weights and nodes
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4. calculate the for all combinations the product of the weights and f evaluated
at that combinations of nodes

5. sum for all the weighted evaluations

C.4 PINN-MRI Alignment via Gaussian Quadrature

MRI data is intrinsically averaged , but the neural network unn used does point wise
prediction, meaning that given (t, x, y, z) the network predict the velocity vector at
that specific point, so we Need to reconcile point-wise predictions with volume-
averaged measurements i.e MRI data, this were Gaussian quadrature comes to
play. The idea is to define the size of a voxel i.e 3D spatial volume over time, we
average the velocities inside that voxel, mathematically speaking:

ūnn =
1

∆t∆x∆y∆z

∫
∆t

∫
∆x

∫
∆y

∫
∆z

unn dt dx dy dz

We use the Gaussian quadrature to approximate this integral and we got the
following:

ūnn ≈
1

∆t∆x∆y∆z
Σs

i=0Σ
n
j=0Σ

m
k=0Σ

p
l=0wiw jwkwlunn(ti, x j, yk, zl)

58



Appendix D

Diving into Problems of PINN

PINNs, despite their potential, face several critical challenges. Spectral bias causes
PINNs to struggle with learning high-frequency components of solutions, leading
to poor approximations of complex functions. The issue of imbalanced losses arises
when different terms in the loss function (e.g., data fitting, PDE residuals) have
disparate magnitudes, resulting in suboptimal training and solutions that may
satisfy some constraints at the expense of others. Lastly, causality violation [21]
occurs when PINNs fail to respect the causal structure inherent in time-dependent
problems, potentially leading to physically inconsistent predictions. These flaws
can significantly impact the accuracy and reliability of PINN solutions, particu-
larly in complex, multi-scale, or time-dependent physical systems, which the case
in fluid mechanics. In summary, PINN suffers from the following problems:

1. Spectral Bias

2. Imbalanced Losses

3. Causality Violation

To address the inherent challenges in PINNs, several advanced techniques
have been developed. Non-dimensionalization helps normalize the scales of dif-
ferent variables and equations, mitigating issues related to imbalanced losses and
improving overall training stability. Fourier feature embeddings combat spectral
bias by explicitly incorporating high-frequency components into the network’s in-
put, enabling better approximation of complex functions. Various loss weighting
schemes, such as adaptive or annealing-based approaches, dynamically adjust the
relative importance of different loss terms during training, addressing the problem
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of imbalanced losses and ensuring a more balanced satisfaction of all constraints.
Lastly, causal training strategies, which include techniques like time-marching
schemes or causal encoders, enforce the temporal causality in time-dependent
problems, preventing causality violations and ensuring physically consistent pre-
dictions. These enhancements collectively improve the accuracy, reliability, and
physical consistency of PINN solutions across a wide range of applications. In
summary, the following techniques mitigate the inherent flaws mentioned earlier:

1. Non-dimensionalization

2. Fourier feature embeddings

3. Loss Weigheting Schemes

4. Causal Training Strategies

Also the following techniques can be used to enhance the performance of
PINNs:

1. Modified multilayer perceptron(MLP) architecture

2. Random Weight Factorization

3. Curriculum Training

D.1 The Right Pipeline to Solve PINN problems

Pipeline proposed consisted of three-step approach optimizes Physics-Informed
Neural Networks. It begins with non-dimensionalization, transforming varied
physical quantities into comparable dimensionless parameters. Next, it employs
advanced network architecture techniques to better capture complex physical be-
haviors. The final step introduces innovative training optimization strategies,
balancing loss components and respecting physical causality. This comprehen-
sive pipeline significantly improves PINN accuracy and consistency in modeling
diverse scientific and engineering applications.
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Figure D.1: Proposed PINN Enhancement Pipeline

D.1.1 Non-dimensionlization

Non-dimensionalization in PINNs transforms complex systems into dimension-
less forms, offering two key benefits. First, it mitigates differences in variable
scales, allowing the neural network to handle diverse physical quantities more
effectively. Second, it promotes faster convergence and improved performance
during training. By normalizing variables to similar ranges, the optimization
process becomes more stable and efficient, enabling PINNs to learn underlying
physical relationships more accurately and rapidly across various scientific and
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engineering applications.

D.1.2 Architecture

Random Fourier Features

Random Fourier Features is proposed [20] to solve the problem of spectral bias,
which is the tendency of MLP to prefer learning low frequency functions. To
mitigate the spectral bias, Random Fourier Embedding is suggested:

γ : Rn
→ Rm (D.1)

γ(x) = [B1 cos(x1),B2 sin(x1), ...] (D.2)

where Bi is sampled from a normal distribution Bi ∼ N(0, σ2) where σ is an hyper-
parameter

Random Weight Factorization

Random Weight Factorization is an effective technique that improves the perfor-
mance of the PINN, the idea is to add a trainable parameter which is a scale for
every neuron in the network. RWF implementation is straight forward:
(a) Initialize the weights of the network {Wi, bi}

L
i=1

(b) For each layer l sample each of the entries of sl from a normal distribution
sl
∼ N(0, σ2)

(c) Thus W(l) = diag(exp
(
s(l)

)
).V(l)

(d) The new network parameters become {si,Vi, bi
}
L
i=1

The authors recommend µ = 1.0 and σ = 0.1

D.1.3 Training

Temporal Causality

PINNs tends to minimize the residual without taking into account the chronolog-
ical order, meaning trying to minimizing the residuals at later times before getting
correct solutions for earlier times. The idea is to split the time range into M equal
parts, so the residual loss will be defined as follow:

Lr(θ) =
1
M
ΣM

i=1wiL
i
r(θ) (D.3)
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Such that
wi = exp(−ϵΣi

j=1L
i
r(θ)) (D.4)

Where ϵ is a hyper-parameter

Loss Balancing

Loss Balancing is a technique implemented to prevent the gradient of some loss
term to steer the learning in its direction too much, which may affects the learning
badly. The weights are first initialized to one, after some specified number of
epochs the the weights are updated as follow:
(a) Initialize the weights λic = λbc = λr = 1
(b) For every f epochs :

λ̂ic =
∥∆θLic∥ + ∥∆θLbc∥ + ∥∆θLr∥

∥∆θLic∥

λ̂bc =
∥∆θLic∥ + ∥∆θLbc∥ + ∥∆θLr∥

∥∆θLbc∥

λ̂r =
∥∆θLic∥ + ∥∆θLbc∥ + ∥∆θLr∥

∥∆θLr∥

Updates the weights :
λnew = αλold + (1 − α)λ̂new

Curriculum Training

The idea of curriculum training[12] is to decompose the optimization task into
more manageable sub-tasks, this approach is suggested to be an effective way
to solve the problem that requires high predictive accuracy. This step is better
explained by an example, if our problem is to find a solution for navier-stokes
equation with a high Renolds number, we start by training the model for low
Renolds number, and we use that as a starting point for solving with respect to
high Renolds number
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D.1.4 Various Enhancing Methods

Optimizer and Learning rate

The Adam optimizer is the preferred choice for training Physics-Informed Neural
Networks (PINNs) in forward problems, offering superior performance with mini-
mal tuning requirements. Notably, weight decay, also known as L2 regularization,
is not recommended for forward problems, as it may unnecessarily constrain the
network’s ability to capture intricate physical relationships. Research [22] indicates
that an initial learning rate of 10−3, coupled with an exponential decay schedule,
consistently yields favorable results. This learning rate strategy allows the opti-
mizer to make significant progress in the early stages of training while gradually
refining the solution as training progresses. The combination of Adam optimizer
and this specific learning rate approach enables PINNs to converge efficiently and
accurately to solutions that satisfy both the governing equations and boundary
conditions of the physical system being modeled.

Random Sampling

Random sampling of points for enforcing physics in PINNs is highly recom-
mended due to its significant benefits in improving both performance and gen-
eralization capabilities. This approach involves selecting a diverse set of points
throughout the domain where the governing equations are evaluated, rather than
using a fixed grid. By randomly sampling these collocation points, PINNs are
exposed to a more comprehensive representation of the problem space, which acts
as an implicit form of regularization. This randomization helps prevent overfitting
to specific regions and encourages the network to learn a more robust and gen-
eralized representation of the underlying physics. The stochastic nature of point
selection also aids in breaking symmetries that might otherwise lead to suboptimal
local minima during training. Furthermore, random sampling allows for adaptive
refinement strategies, where more points can be dynamically allocated to regions
of high complexity or error. This flexibility enhances the PINN’s ability to capture
fine-scale features and steep gradients in the solution, ultimately leading to more
accurate and physically consistent predictions across the entire domain.

Modified MLP

A modified version of MLP is suggested [23] to enhance the capability of the
PINNs for learn non-linear and complex solutions of PDE. The modified MLP is
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presented in the following:

U(x) = σ(W1 ∗ x + b1); V(x) = σ(W2 ∗ x = b2)

Such that σ is a non linear activation

f (l)(x) =W(l).g(l−l)(x) + b(l)

g(l)(x) = σ( f (l)(x)) ⊙U(x) + (1 − σ( f (l)(x))) ⊙ V(x)

Thus the parameters of the network are the following:

θ = {W1, b1,W2, b2, (Wl, bl)L
l=1}

Choosing a small ϵ may fail to impose temporal causality, in contrast choosing a
large ϵmay results in a more difficult optimization problem.

D.1.5 The Optimal Algorithm

1. Non-dimensionlize PDE

2. Represent the solution of the PDE by a modified MLP uθ by Fourier Fea-
ture Embeddings and Random weights Factorization, use the tanh as an
activation function and use the Glorot scheme

3. Formulate the Loss function :

L(θ) = λicLic(θ) + λbcLbc(θ) + λrLr(θ) (D.5)

Such that we split the range of time into M equal parts, so:

Lr(θ) =
1
M
ΣM

i=1wiL
i
r(θ) (D.6)

4. Set all the weights λic,λbc, λr and {wi}
M
i=1
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5. for n = 1, ...,S do (a) Randomly sample points to evaluate the terms of the
loss function (b) Update the Temporal weights wi if nmod f then (c) Compute
the loss terms weights by:

λ̂ic =
∥∆θLic∥ + ∥∆θLbc∥ + ∥∆θLr∥

∥∆θLic∥
(D.7)

λ̂bc =
∥∆θLic∥ + ∥∆θLbc∥ + ∥∆θLr∥

∥∆θLbc∥

λ̂r =
∥∆θLic∥ + ∥∆θLbc∥ + ∥∆θLr∥

∥∆θLr∥

(d) Update the weights of the loss terms

λnew = αλold + (1 − α)λ̂new (D.8)

end if

6. Update the parameters θ

θn+1 = θn − η∆θL(θn) (D.9)
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